
ECE/CS 752:Advanced Computer Architecture I 1

Advanced Memory Hierarchy

Prof. Mikko H. Lipasti
University of Wisconsin‐Madison

Lecture notes based on notes by John P. Shen
and Mark Hill
Updated by Mikko Lipasti

Readings

• Read on your own:
– Review: Shen & Lipasti Chapter 3

– W.‐H. Wang, J.‐L. Baer, and H. M. Levy. Organization of a two‐level virtual‐real cache
hierarchy, Proc. 16th ISCA, pp. 140‐148, June 1989 (B6) Online PDF

– D. Kroft. Lockup‐Free Instruction Fetch/Prefetch Cache Organization, Proc. International
Symposium on Computer Architecture , May 1981 (B6). Online PDF

i i i d h f b h ddi i f ll– N.P. Jouppi. Improving Direct‐Mapped Cache Performance by the Addition of a Small
Fully‐Associative Cache and Prefetch Buffers, Proc. International Symposium on
Computer Architecture , June 1990 (B6). Online PDF

• Discuss in class:
– Review due 3/24/2010: Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, Doug Burger, "Phase‐Change Technology and the Future of Main
Memory," IEEE Micro, vol. 30, no. 1, pp. 143‐143, Jan./Feb. 2010

– Read Sec. 1, skim Sec. 2, read Sec. 3: Bruce Jacob, “The Memory System: You Can't Avoid
It, You Can't Ignore It, You Can't Fake It,” Synthesis Lectures on Computer Architecture
2009 4:1, 1‐77.

2

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Coherent Memory Interface

Out-of-order
processor

core

Load Q Store Q

Critical word bypass

Level 1 tag array Level 1 data array

Storethrough Q WB
buffer

MSHR Snoop
queue

WB buffer Fill buffer

Level 2 tag array Level 2 data array

System address and response bus System data bus

Coherent Memory Interface
• Load Queue

– Tracks inflight loads for aliasing, coherence

• Store Queue

– Defers stores until commit, tracks aliasing

• Storethrough Queue or Write Buffer or Store Buffer

– Defers stores, coalesces writes, must handle RAW

• MSHR

– Tracks outstanding misses, enables lockup‐free caches [Kroft ISCA 91]

• Snoop Queue

– Buffers, tracks incoming requests from coherent I/O, other processors

• Fill Buffer

– Works with MSHR to hold incoming partial lines

• Writeback Buffer

– Defers writeback of evicted line (demand miss handled first)

Evaluation Methods ‐ Counters

• Counts hits and misses in hardware

– see [Clark, TOCS 1983]

– Intel VTune tool

• Accurate

l kl d h• Realistic workloads ‐ system, user, everything

• Requires machine to exist

• Hard to vary cache parameters

• Experiments not deterministic

ECE/CS 752:Advanced Computer Architecture I 2

Evaluation Methods ‐ Analytical

• Mathematical expressions

– Insight ‐ can vary parameters

– Fast

– Absolute accuracy suspect for models with few
parameters

– Hard to determine many parameter values

– Not widely used today

Evaluation: Trace‐Driven Simulation

program input data

execute and trace

discard output
trace file

run cache simulator

 input
cache parameters

compute effective access from miss ratio
repeat
as needed

input tcache, tmiss

Evaluation: Trace‐Driven Simulation

• Experiments repeatable

• Can be accurate

• Much recent progress

• Reasonable traces are very large ~gigabytes• Reasonable traces are very large gigabytes

• Simulation can be time consuming

• Hard to say if traces representative

• Don’t model speculative execution

Evaluation: Execution‐Driven Simulation

• Do full processor simulation each time

– Actual performance; with ILP miss rate means nothing

• Non‐blocking caches

• Prefetches (timeliness)

• Pollution effects due to speculation

– No need to store trace

– Much more complicated simulation model

• Time‐consuming ‐ but good programming can
help

• Very common today

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Seznec’s Skewed Associative Cache

• Alleviates conflict misses in a conventional set assoc cache

• If two addresses conflict in 1 bank, they conflict in the others too

– e.g., 3 addresses with same index bits will thrash in 2‐way cache

• Solution: use different hash functions for each bank

• Works reasonably well: more robust conflict miss behavior

• But: how do you implement replacement policy?

Address

Hash0

Hash1

ECE/CS 752:Advanced Computer Architecture I 3

Jouppi’s Victim Cache
• Targeted at conflict misses

• Victim cache: a small fully associative cache

– holds victims replaced in direct‐mapped or low‐assoc

– LRU replacement

– a miss in cache + a hit in victim cache

• => move line to main cache

• Poor man’s associativity

– Not all sets suffer conflicts; provide limited capacity for conflicts

Address

Hash0

Jouppi’s Victim Cache
• Removes conflict misses, mostly useful for DM or 2‐way

– Even one entry helps some benchmarks

– I‐cache helped more than D‐cache

• Versus cache size

– Generally, victim cache helps more for smaller caches

• Versus line size

– helps more with larger line size (why?)

• Used in Pentium Pro (P6) I‐cache

Address

Hash0

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Software Restructuring
• If column‐major (Fortran)

– x[i+1, j] follows x [i,j] in memory

– x[i,j+1] long after x[i,j] in memory

• Poor code

for i = 1, rows

for j = 1, columns

tig
uo

us
 a

dd
re

ss
es

sum = sum + x[i,j]

• Conversely, if row‐major (C/C++)

• Poor code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

C
on

t

Contiguous addresses

Software Restructuring
• Better column‐major code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

• Optimizations ‐ need to check if it

tig
uo

us
 a

dd
re

ss
es

is valid to do them

– Loop interchange (used above)

– Merging arrays

– Loop fusion

– Blocking

C
on

t

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

ECE/CS 752:Advanced Computer Architecture I 4

Superscalar Caches
• Increasing issue width => wider caches

• Parallel cache accesses are harder than parallel
functional units

• Fundamental difference:

– Caches have state, functional units don’t

Operation thru one port affects future operations thru– Operation thru one port affects future operations thru
others

• Several approaches used

– True multi‐porting

– Multiple cache copies

– Virtual multi‐porting

– Multi‐banking (interleaving)

True Multiporting of SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out

True Multiporting of SRAM

• Would be ideal

• Increases cache area

– Array becomes wire‐dominated

• Slower access

– Wire delay across larger area

– Cross‐coupling capacitance between wires

• SRAM access difficult to pipeline

Multiple Cache Copies
Load Port 0

Load Port 1

Store Port

• Used in DEC Alpha 21164, IBM Power4

• Independent load paths

• Single shared store path

– May be exclusive with loads, or internally dual‐ported

• Bottleneck, not practically scalable beyond 2 paths

• Provides some fault‐tolerance

– Parity protection per copy

– Parity error: restore from known‐good copy

– Avoids more complex ECC (no RMW for subword writes), still provides SEC

Virtual Multiporting

• Used in IBM Power2 and DEC 21264

– Wave pipelining: pipeline wires WITHOUT latches

Port 0

Port 1

Wave pipelining: pipeline wires WITHOUT latches

• Time‐share a single port

• Not scalable beyond 2 ports

• Requires very careful array design to guarantee balanced paths

– Second access cannot catch up with first access

• Short path constraint limits maximum clock period

• Complicates and reduces benefit of speed binning

Multi‐banking or Interleaving

Port 0

Port 1

Bank 0

C
rossbar C

ro
ss

ba
r

Port 0

Port 1

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

• Used in Intel Pentium (8 banks)

• Need routing network

• Must deal with bank conflicts

– Bank conflicts not known till address generated

– Difficult in non‐data‐capture machine with speculative scheduling

• Replay – looks just like a cache miss

– Sensitive to bank interleave: fine‐grained vs. coarse‐grained

• Spatial locality: many temporally local references to same block

– Combine these with a “row buffer” approach?

ECE/CS 752:Advanced Computer Architecture I 5

Combined Schemes

• Multiple banks with multiple ports

• Virtual multiporting of multiple banks

• Multiple ports and virtual multiporting

• Multiple banks with multiply virtually multiported
ports

• Complexity!

• No good solution known at this time

– Current generation superscalars get by with 1‐3 ports

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Sublines

• Break blocks into

– Address block associated with tag

– Transfer block to/from memory (subline, sub‐block)

• Large address blocks

– Decrease tag overhead

– But allow fewer blocks to reside in cache (fixed mapping)

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Sublines
• Larger transfer block

– Exploit spatial locality

– Amortize memory latency

– But take longer to load

– Replace more data already cached (more conflicts)

– Cause unnecessary traffic

T i ll d i l L2/L3 h t li it t h d• Typically used in large L2/L3 caches to limit tag overhead

• Sublines tracked by MSHR during pending fill

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Latency vs. Bandwidth

• Latency can be handled by

– Hiding (or tolerating) it ‐ out of order issue, nonblocking
cache

– Reducing it – better caches

• Parallelism helps to hide latency

– MLP – multiple outstanding cache misses overlapped

• But increases bandwidth demand

• Latency ultimately limited by physics

Latency vs. Bandwidth
• Bandwidth can be handled by “spending” more (hardware cost)

– Wider buses, interfaces

– Banking/interleaving, multiporting

• Ignoring cost, a well‐designed system should never be bandwidth‐limited

– Can’t ignore cost!

• Bandwidth improvement usually increases latency

– No free lunch

• Hierarchies decrease bandwidth demand to lower levels

– Serve as traffic filters: a hit in L1 is filtered from L2

• Parallelism puts more demand on bandwidth

• If average b/w demand is not met => infinite queues

– Bursts are smoothed by queues

• If burst is much larger than average => long queue

– Eventually increases delay to unacceptable levels

ECE/CS 752:Advanced Computer Architecture I 6

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Multilevel caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Multilevel Caches

• Ubiquitous in high‐performance processors

– Gap between L1 (core frequency) and main memory too high

– Level 2 usually on chip, level 3 on or off‐chip, level 4 off chip

• Inclusion in multilevel caches

– Multi‐level inclusion holds if L2 cache is superset of L1

– Can handle virtual address synonyms

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop

– Makes L1 writes simpler

• For both write‐through and write‐back

Multilevel Inclusion

• Example: local LRU not sufficient to guarantee
inclusion

Assume L1 holds two and L2 holds three blocks

P
1
4

2
3
4

1,2,1,3,1,4 1,2,3,4

– Assume L1 holds two and L2 holds three blocks

– Both use local LRU

• Final state: L1 contains 1, L2 does not

– Inclusion not maintained

• Different block sizes also complicate inclusion

Multilevel Inclusion

• Inclusion takes effort to maintain

– Make L2 cache have bits or pointers giving L1 contents

P
1
4

2
3
4

1,2,1,3,1,4 1,2,3,4

– Invalidate from L1 before replacing from L2

– In example, removing 1 from L2 also removes it from L1

• Number of pointers per L2 block

– L2 blocksize/L1 blocksize

• Reading list: [Wang, Baer, Levy ISCA 1989]

Multilevel Miss Rates

• Miss rates of lower level caches

– Affected by upper level filtering effect

– LRU becomes LRM, since “use” is “miss”

– Can affect miss rates, though usually not important

• Miss rates reported as:• Miss rates reported as:

– Miss per instruction

– Global miss rate

– Local miss rate

– “Solo” miss rate

• L2 cache sees all references (unfiltered by L1)

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

ECE/CS 752:Advanced Computer Architecture I 7

Prefetching

• Even “demand fetching” prefetches other
words in block

– Spatial locality

• Prefetching is useless

U l f t h t l th d d i– Unless a prefetch costs less than demand miss

• Ideally, prefetches should

– Always get data before it is referenced

– Never get data not used

– Never prematurely replace data

– Never interfere with other cache activity

Software Prefetching

• Use compiler to try to

– Prefetch early

– Prefetch accurately

• Prefetch into

– Register (binding)

• Use normal loads? Stall‐on‐use (Alpha 21164)

• What about page faults? Exceptions?

– Caches (non‐binding) – preferred

• Needs ISA support

Software Prefetching

• For example:

do j= 1, cols

do ii = 1 to rows by BLOCK

prefetch (&(x[i,j])+BLOCK) # prefetch one block
ahead

do i = ii to ii + BLOCK‐1

sum = sum + x[i,j]

• How many blocks ahead should we prefetch?

– Affects timeliness of prefetches

– Must be scaled based on miss latency

Hardware Prefetching

• What to prefetch

– One block spatially ahead

– N blocks spatially ahead

– Based on observed stride

• When to prefetch

– On every reference

• Hard to find if block to be prefetched already in the cache

– On every miss

• Better than doubling block size – why?

– Tagged

• Prefetch when prefetched item is referenced

Prefetching for Pointer‐based Data Structures

• What to prefetch

– Next level of tree: n+1, n+2, n+?

• Entire tree? Or just one path

– Next node in linked list: n+1, n+2, n+?

– Jump‐pointer prefetching

– Markov prefetchingp g

• How to prefetch

– Software places jump pointers in data structure

– Hardware scans blocks for pointers

• Content‐driven data prefetching

0xafde 0xfde0

0xde04

Stream or Prefetch Buffers

• Prefetching causes capacity and conflict misses (pollution)

– Can displace useful blocks

• Aimed at compulsory and capacity misses

• Prefetch into buffers, NOT into cache

– On miss start filling stream buffer with successive lines

– Check both cache and stream buffer

• Hit in stream buffer => move line into cache (promote)

• Miss in both => clear and refill stream buffer

• Performance

– Very effective for I‐caches, less for D‐caches

– Multiple buffers to capture multiple streams (better for D‐caches)

• Can use with any prefetching scheme to avoid pollution

ECE/CS 752:Advanced Computer Architecture I 8

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Main Memory

• DRAM chips

• Memory organization

– Interleaving

–Banking

• Memory controller design

DRAM Chip Organization

Sense Amps

R
ow

 D
ec

o
de

r

Wo rd
Lines

Bi tl ines

Memory
Ce llRow

Address B itline

Word line

Capacitor

Transisto r

Ar ray

• Optimized for density, not speed

• Data stored as charge in capacitor

• Discharge on reads => destructive reads

• Charge leaks over time

– refresh every few ms

Row Buffe r

Co lum n Decoder
Colum n
Address

Data bus

 Cycle time roughly twice
access time

 Need to precharge bitlines
before access

DRAM Chip Organization

Sense Amps
R

ow
 D

ec
o

de
r

Wo rd
Lines

Bi tl ines

Memory
Ce llRow

Address B itline

Word line

Capacitor

Transisto r

Ar ray

• Current generation DRAM

– 1Gbit, moving to 4 Gbit

– 133 MHz synchronous interface

– Data bus 2, 4, 8, 16 bits

Row Buffe r

Co lum n Decoder
Colum n
Address

Data bus

 Address pins are time‐multiplexed

– Row address strobe (RAS)

– Column address strobe (CAS)

DRAM Chip Organization

R
ow

 D
ec

o
de

r

Word
Lines

Bitl ines

Memory
CellRow

Address Bitline

Wordline

Capacitor

Transistor

Array

• New RAS results in:

– Bitline precharge

– Row decode, sense

– Row buffer write (up to 8K)

Sense Amps

Row Buffer

Column Decoder
Column
Address

Data bus

 New CAS

– Row buffer read

– Much faster (3x)

 Streaming row accesses desirable

Simple Main Memory

• Consider these parameters:

– 1 cycle to send address

– 6 cycles to access each word

1 l t d d b k– 1 cycle to send word back

• Miss penalty for a 4‐word block

– (1 + 6 + 1) x 4 = 32

• How can we speed this up?

ECE/CS 752:Advanced Computer Architecture I 9

Wider(Parallel) Main Memory

• Make memory wider

– Read out all words in parallel

• Memory parameters

– 1 cycle to send address

– 6 to access a double word

– 1 cycle to send it back

• Miss penalty for 4‐word block: 1+6+1 = 16

• Costs

– Wider bus

– Larger minimum expansion unit (e.g. paired DIMMs)

Interleaved Main Memory

Byte in Word

Bank 0

Bank 1

 Break memory into M banks

– Word A is in A mod M at A div M

 Banks can operate concurrently and
independently

• Each bank has

– Private address lines

– Private data lines

– Private control lines (read/write)

Word in Doubleword

Bank

Doubleword in bank Bank2

Bank 3

Interleaved and Parallel Organization

DRAM

Add
r
Cm

d
D at

a
CS

DRAM

DRAM

DRAM

DRAM

DRAM

Addr
Cm

d
Data

Serial Parallel

Non-interleaved

DRAM DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Add
r

C
md

D
at a

C
S

Addr

C
m

d
D
ata

C
S Add

r

C
md

D
at a

Addr

C
md

D
ata

Interleaved

Interleaved Memory Summary

• Parallel memory adequate for sequential accesses

– Load cache block: multiple sequential words

– Good for writeback caches

• Banking useful otherwise

– If many banks, choose a prime number

• Can also do both

– Within each bank: parallel memory path

– Across banks

• Can support multiple concurrent cache accesses (nonblocking)

Memory Controller Organization

ReadQ WriteQ RespQ

Scheduler Buffer

Memory
Controller

DIMM(s) DIMM(s)

Bank0 Bank1

Commands Data Commands Data

Memory Controller Organization

• ReadQ

– Buffers multiple reads, enables scheduling optimizations

• WriteQ

– Buffers writes, allows reads to bypass writes, enables scheduling opt.

• RespQ

– Buffers responses until bus availableBuffers responses until bus available

• Scheduler

– FIFO? Or schedule to maximize for row hits (CAS accesses)

– Scan queues for references to same page

– Looks similar to issue queue with page number broadcasts for tag match

– Fairness when sharing a memory controller [Nesbit, 2006]

• Buffer

– Builds transfer packet from multiple memory words to send over
processor bus

ECE/CS 752:Advanced Computer Architecture I 10

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Main Memory and Virtual Memory
• Use of virtual memory

– Main memory becomes another level in the memory
hierarchy

– Enables programs with address space or working set that
exceed physically available memory

• No need for programmer to manage overlays, etc.

• Sparse use of large address space is OK

– Allows multiple users or programs to timeshare limited
amount of physical memory space and address space

• Bottom line: efficient use of expensive resource, and
ease of programming

Virtual Memory

• Enables
– Use more memory than system has

– Think program is only one running
• Don’t have to manage address space usage across programs

• E.g. think it always starts at address 0x0g y

– Memory protection
• Each program has private VA space: no‐one else can clobber it

– Better performance
• Start running a large program before all of it has been loaded from
disk

Virtual Memory – Placement

• Main memory managed in larger blocks

– Page size typically 4K – 16K

• Fully flexible placement; fully associative

O i l– Operating system manages placement

– Indirection through page table

– Maintain mapping between:

• Virtual address (seen by programmer)

• Physical address (seen by main memory)

Virtual Memory – Placement

• Fully associative implies expensive lookup?

– In caches, yes: check multiple tags in parallel

• In virtual memory, expensive lookup is
avoided by using a level of indirectionavoided by using a level of indirection

– Lookup table or hash table

– Called a page table

Virtual Memory – Identification

• Similar to cache tag array
– Page table entry contains VA, PA, dirty bit

Virtual Address Physical Address Dirty bit
0x20004000 0x2000 Y/N

g y y

• Virtual address:
– Matches programmer view; based on register values

– Can be the same for multiple programs sharing same
system, without conflicts

• Physical address:
– Invisible to programmer, managed by O/S

– Created/deleted on demand basis, can change

ECE/CS 752:Advanced Computer Architecture I 11

Virtual Memory – Replacement

• Similar to caches:

– FIFO

– LRU; overhead too high

• Approximated with reference bit checks• Approximated with reference bit checks

• “Clock algorithm” intermittently clears all bits

– Random

• O/S decides, manages

– CS537

Virtual Memory – Write Policy

• Write back

– Disks are too slow to write through

• Page table maintains dirty bit

H d di bi fi i– Hardware must set dirty bit on first write

– O/S checks dirty bit on eviction

– Dirty pages written to backing store

• Disk write, 10+ ms

Virtual Memory Implementation

• Caches have fixed policies, hardware FSM for
control, pipeline stall

• VM has very different miss penalties

R b di k 10 !– Remember disks are 10+ ms!

• Hence engineered differently

Page Faults

• A virtual memory miss is a page fault
– Physical memory location does not exist

– Exception is raised, save PC

– Invoke OS page fault handler
• Find a physical page (possibly evict)Find a physical page (possibly evict)

• Initiate fetch from disk

– Switch to other task that is ready to run

– Interrupt when disk access complete

– Restart original instruction

• Why use O/S and not hardware FSM?

Address Translation

• O/S and hardware communicate via PTE

VA PA Dirty Ref Protection
0x20004000 0x2000 Y/N Y/N Read/Write/

Execute

• O/S and hardware communicate via PTE

• How do we find a PTE?

– &PTE = PTBR + page number * sizeof(PTE)

– PTBR is private for each program

• Context switch replaces PTBR contents

Address Translation

PAVADPTBR

Virtual Page Number Offset

+ PAVADPTBR +

ECE/CS 752:Advanced Computer Architecture I 12

Page Table Size

• How big is page table?

– 232 / 4K * 4B = 4M per program (!)

– Much worse for 64‐bit machines

T k it ll• To make it smaller

– Use limit register(s)

• If VA exceeds limit, invoke O/S to grow region

– Use a multi‐level page table

– Make the page table pageable (use VM)

Multilevel Page Table

PTBR +

Offset

+

+

Hashed Page Table

• Use a hash table or inverted page table

– PT contains an entry for each real address

• Instead of entry for every virtual address

– Entry is found by hashing VAEntry is found by hashing VA

– Oversize PT to reduce collisions: #PTE = 4 x (#phys.
pages)

Hashed Page Table

PTBR

Virtual Page Number Offset

H h PTE2PTE1PTE0 PTE3PTBR Hash PTE2PTE1PTE0 PTE3

High‐Performance VM

• VA translation
– Additional memory reference to PTE

– Each instruction fetch/load/store now 2 memory
references

• Or more, with multilevel table or hash collisions

– Even if PTE are cached, still slow

• Hence, use special‐purpose cache for PTEs
– Called TLB (translation lookaside buffer)

– Caches PTE entries

– Exploits temporal and spatial locality (just a cache)

Translation Lookaside Buffer

TagPPN

�

�

Virtual page no.

POIndex Tag

Virtual
page no. �

�

�

TagPPN

POTagIndexTag

• Set associative (a) or fully associative (b)

• Both widely employed

(b)(a)

Physical page no.

Physical address

Page
offset

Page
offset

Physical address

Physical
page no.

�

ECE/CS 752:Advanced Computer Architecture I 13

Interaction of TLB and Cache
Virtual page no. (VPN)

Tag Index Page offset (PO)

T I d BO

PO

BO

Virtual
address
(n � v � g bits)

Physical
address

v � k k

g

p

TLB

Physical page no. (PPN)

• Serial lookup: first TLB then D‐cache

• Excessive cycle time

Tag Index

D-cache

Data

BO BO:
block offset

(m � p � g bits)

t i b

Virtually Indexed Physically Tagged L1

Virtual page no. (VPN) Virtual page no. (VPN)

Tag Index Page offset (PO)

Index

D-cache

BO

PPN

v � k k

i b g

p

TLB

p

Tag Index Page offset

• Parallel lookup of TLB and cache
• Faster cycle time
• Index bits must be untranslated

– Restricts size of n‐associative cache to n x (virtual page size)

– E.g. 4‐way SA cache with 4KB pages max. size is 16KB

Data

Hit /miss

PPN

p
PPN

p

p

�

Virtual Memory Protection

• Each process/program has private virtual address
space
– Automatically protected from rogue programs

• Sharing is possible, necessary, desirable
– Avoid copying staleness issues etcAvoid copying, staleness issues, etc.

• Sharing in a controlled manner
– Grant specific permissions

• Read

• Write

• Execute

• Any combination

Protection

• Process model

– Privileged kernel

– Independent user processes

P i il li• Privileges vs. policy

– Architecture provided primitives

– OS implements policy

– Problems arise when h/w implements policy

• Separate policy from mechanism!

Protection Primitives

• User vs kernel

– at least one privileged mode

– usually implemented as mode bits

• How do we switch to kernel mode?

– Protected “gates” or system calls

– Change mode and continue at pre‐determined address

• Hardware to compare mode bits to access rights

– Only access certain resources in kernel mode

– E.g. modify page mappings

Protection Primitives

• Base and bounds
– Privileged registers

base <= address <= bounds

• Segmentationg
– Multiple base and bound registers

– Protection bits for each segment

• Page‐level protection (most widely used)
– Protection bits in page entry table

– Cache them in TLB for speed

ECE/CS 752:Advanced Computer Architecture I 14

VM Sharing

• Share memory locations by:

– Map shared physical location into both address
spaces:

• E.g. PA 0xC00DA becomes:E.g. PA 0xC00DA becomes:

– VA 0x2D000DA for process 0

– VA 0x4D000DA for process 1

– Either process can read/write shared location

• However, causes synonym problem

VA Synonyms

• Virtually‐addressed caches are desirable
– No need to translate VA to PA before cache lookup

– Faster hit time, translate only on misses

• However, VA synonyms cause problems
– Can end up with two copies of same physical line

– Causes coherence problems [Wang Baer reading]Causes coherence problems [Wang, Baer reading]

• Solutions:
– Flush caches/TLBs on context switch

– Extend cache tags to include PID
• Effectively a shared VA space (PID becomes part of address)

– Enforce global shared VA space (PowerPC)
• Requires another level of addressing (EA‐>VA‐>PA)

Summary: Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock‐up free caches, superscalar caches

• Beyond simple blocks• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

