Readings
Advanced Memory Hierarchy

¢ Read on your own:
— Review: Shen & Lipasti Chapter 3
— W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization of a two-level virtual-real cache

PI’Of. Mikko H. LipGSti hierarchy, Proc. 16th ISCA, pp. 140-148, June 1989 (B6) Online PDF
. — D.Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization, Proc. International
University of Wisconsin-Madison Symposium on Computer Architecture , May 1981 (B6). Online PDF

= N.P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers, Proc. International Symposium on

Lecture notes based on notes by John P. Shen Computer Architecture , June 1990 (B6). Online PDF

and Mark Hill

Updated by Mikko Lipasti

* Discuss in class:

— Review due 3/24/2010: Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, Doug Burger, "Phase-Change Technology and the Future of Main
Memory," IEEE Micro, vol. 30, no. 1, pp. 143-143, Jan./Feb. 2010

— Read Sec. 1, skim Sec. 2, read Sec. 3: Bruce Jacob, “The Memory System: You Can't Avoid
It, You Can't Ignore It, You Can't Fake It,” Synthesis Lectures on Computer Architecture
2009 4:1, 1-77.

Advanced Memory Hierarchy Coherent Memory Interface
* Coherent Memory Interface 5
Out-of-order Critical word bypass |
* Evaluation methods processor i
core !
* Better miss rate: skewed associative caches, victim caches !
* Reducing miss costs through software restructuring J Load Q 1 Store Q i
* Higher bandwidth: Lock-up free caches, superscalar caches E‘, Level 1 data array i
¢ Beyond simple blocks Storethrough Q i
¢ Two level caches % i
* Prefetching, software prefetching ——>| Level 2dawarray i
* Main Memory, DRAM WB buffer Fill buffer |
MSHR Snoop !
* Virtual Memory, TLBs queue
* Interaction of caches, virtual memory
] f
System address and response bus. System data bus
Coherent Memory Interface Evaluation Methods - Counters

¢ Load Queue
— Tracks inflight loads for aliasing, coherence ¢ Counts hits and misses in hardware

* Store Queue _ see [Clark, TOCS 1983]
— Defers stores until commit, tracks aliasing
* Storethrough Queue or Write Buffer or Store Buffer ~ Intel VTune tool

— Defers stores, coalesces writes, must handle RAW e Accurate

¢ MSHR

. isti _ .
— Tracks outstanding misses, enables lockup-free caches [Kroft ISCA 91] Realistic workloads SyStem' user, everythlng

* Snoop Queue ¢ Requires machine to exist

— Buffers, tracks incoming requests from coherent I/0, other processors

) ¢ Hard to vary cache parameters
* Fill Buffer

— Works with MSHR to hold incoming partial lines ¢ Experiments not deterministic

* Writeback Buffer

— Defers writeback of evicted line (demand miss handled first)

ECE/CS 752:Advanced Computer Architecture |

Evaluation Methods - Analytical Evaluation: Trace-Driven Simulation
e Mathematical expressions

rogram input data
— Insight - can vary parameters prog P
— Fast
— Absolute accuracy suspect for models with few execute and trace
parameters
— Hard to determine many parameter values input trace file .
— Not widely used today cache parameters discard output

- run cache simulator
Input tcaches tmiss

. repeat
compute effective access from miss ratio/ as needed

Evaluation: Trace-Driven Simulation Evaluation: Execution-Driven Simulation
e Experiments repeatable * Do full processor simulation each time
e Can be accurate — Actual performance; with ILP miss rate means nothing

* Non-blocking caches

e Much recent progress

* Prefetches (timeliness)

Reasonable traces are very large ~gigabytes « pollution effects due to speculation

Simulation can be time consuming — No need to store trace

e Hard to say if traces representative — Much more complicated simulation model
e Don’t model speculative execution » Time-consuming - but good programming can
help

e Very common today

Advanced Memory Hierarchy Seznec’s Skewed Associative Cache

* Coherent Memory Interface

) * Alleviates conflict misses in a conventional set assoc cache
¢ Evaluation methods

. - - * Iftwo addresses conflict in 1 bank, they conflict in the others too
* Better miss rate: skewed associative caches, victim caches

— e.g., 3 addresses with same index bits will thrash in 2-way cache
¢ Reducing miss costs through software restructurin
€ € € * Solution: use different hash functions for each bank

* Higher bandwidth: Lock-up free caches, superscalar caches ¢ Works reasonably well: more robust conflict miss behavior

* Beyond simple blocks ¢ But: how do you implement replacement policy?
* Two level caches

« Prefetching, software prefetching
¢ Main Memory, DRAM

* Virtual Memory, TLBs

* Interaction of caches, virtual memory

ECE/CS 752:Advanced Computer Architecture |

Jouppi’s Victim Cache

* Targeted at conflict misses
* Victim cache: a small fully associative cache

— holds victims replaced in direct-mapped or low-assoc

— LRU replacement

— amissin cache +a hit in victim cache

« =>move line to main cache

* Poor man’s associativity

— Not all sets suffer conflicts; provide limited capacity for conflicts

Jouppi’s Victim Cache

Removes conflict misses, mostly useful for DM or 2-way

— Even one entry helps some benchmarks

— I-cache helped more than D-cache
Versus cache size

— Generally, victim cache helps more for smaller caches
Versus line size

— helps more with larger line size (why?)
Used in Pentium Pro (P6) I-cache

Advanced Memory Hierarchy

* Coherent Memory Interface

* Evaluation methods

* Better miss rate: skewed associative caches, victim caches
* Reducing miss costs through software restructuring

* Higher bandwidth: Lock-up free caches, superscalar caches
* Beyond simple blocks

¢ Two level caches

* Prefetching, software prefetching

* Main Memory, DRAM

* Virtual Memory, TLBs

* Interaction of caches, virtual memory

Software Restructuring
If column-major (Fortran)
— x[i+1, j] follows x [i,j] in memory
— x[i,j+1] long after x[i,j] in memory
Poor code
fori=1, rows

for j =1, columns

Contiguous addresses

sum = sum + x[i,j]
Conversely, if row-major (C/C++)
Contiguous addresses
Poor code ——
for j =1, columns
fori=1, rows

sum = sum + x[i,j]

Software Restructuring
¢ Better column-major code
forj=1, columns
fori=1, rows
sum = sum + x[i,j]

* Optimizations - need to check if it
is valid to do them

Contiguous addresses

— Loop interchange (used above)
— Merging arrays
— Loop fusion

— Blocking

ECE/CS 752:Advanced Computer Architecture |

Advanced Memory Hierarchy
Coherent Memory Interface
Evaluation methods
Better miss rate: skewed associative caches, victim caches
Reducing miss costs through software restructuring
Higher bandwidth: Lock-up free caches, superscalar caches
Beyond simple blocks
Two level caches
Prefetching, software prefetching
Main Memory, DRAM
Virtual Memory, TLBs

Interaction of caches, virtual memory

Superscalar Caches

¢ Increasing issue width => wider caches

¢ Parallel cache accesses are harder than parallel

functional units
Fundamental difference:
— Caches have state, functional units don’t

— Operation thru one port affects future operations thru
others

Several approaches used
— True multi-porting

— Multiple cache copies

— Virtual multi-porting

— Multi-banking (interleaving)

True Multiporting of SRAM

“Bit” Lines
Datu_Cii) -carry data in/out
A_Adx
select |
‘Word” Lines B Ade
-select a row seleet
C_Adx
calect T
Bit Sliee
Ixata_A(l) Data_Bif]
C=Wnite Poet

AB = Read Forts

True Multiporting of SRAM

Would be ideal

Increases cache area

— Array becomes wire-dominated

Slower access

— Wire delay across larger area

— Cross-coupling capacitance between wires

SRAM access difficult to pipeline

Multiple Cache Copies

Load Port 0

Store Port

Load Port 1

* Used in DEC Alpha 21164, IBM Power4
* Independent load paths
* Single shared store path

— May be exclusive with loads, or internally dual-ported
* Bottleneck, not practically scalable beyond 2 paths
* Provides some fault-tolerance

— Parity protection per copy

— Parity error: restore from known-good copy

~ Avoids more complex ECC (no RMW for subword writes), still provides SEC

Virtual Multiporting

Port 0
Port 1

Used in IBM Power2 and DEC 21264
— Wave pipelining: pipeline wires WITHOUT latches

Time-share a single port

Not scalable beyond 2 ports

Requires very careful array design to guarantee balanced paths
— Second access cannot catch up with first access

Short path constraint limits maximum clock period

Complicates and reduces benefit of speed binning

ECE/CS 752:Advanced Computer Architecture |

Multi-banking or Interleaving

* Used in Intel Pentium (8 banks)
* Need routing network
* Must deal with bank conflicts
— Bank conflicts not known till address generated

— Difficult in non-data-capture machine with

« Replay ~looks just like a cache miss
— Sensitive to bank interleave: fine-grained vs. coarse-grained
* Spatial locality: many temporally local references to same block

~ Combine these with a “row buffer” approach?

Combined Schemes

¢ Multiple banks with multiple ports
¢ Virtual multiporting of multiple banks
¢ Multiple ports and virtual multiporting

¢ Multiple banks with multiply virtually multiported
ports

¢ Complexity!
¢ No good solution known at this time

— Current generation superscalars get by with 1-3 ports

Advanced Memory Hierarchy

* Coherent Memory Interface

* Evaluation methods

* Better miss rate: skewed associative caches, victim caches
* Reducing miss costs through software restructuring

* Higher bandwidth: Lock-up free caches, superscalar caches
* Beyond simple blocks

* Two level caches

* Prefetching, software prefetching

* Main Memory, DRAM

* Virtual Memory, TLBs

* Interaction of caches, virtual memory

Sublines

* Break blocks into

— Address block associated with tag

— Transfer block to/from memory (subline, sub-block)
* Large address blocks

— Decrease tag overhead

— But allow fewer blocks to reside in cache (fixed mapping)

Subline Valid Bits

Sublines

* Larger transfer block

— Exploit spatial locality

— Amortize memory latency

— But take longer to load

— Replace more data already cached (more conflicts)

— Cause unnecessary traffic
* Typically used in large L2/L3 caches to limit tag overhead
* Sublines tracked by MSHR during pending fill

Subline Valid Bits

Latency vs. Bandwidth

¢ Latency can be handled by

— Hiding (or tolerating) it - out of order issue, nonblocking
cache

— Reducing it — better caches
¢ Parallelism helps to hide latency

— MLP — multiple outstanding cache misses overlapped
¢ Butincreases bandwidth demand

¢ Latency ultimately limited by physics

ECE/CS 752:Advanced Computer Architecture |

Latency vs. Bandwidth

* Bandwidth can be handled by “spending” more (hardware cost)
— Wider buses, interfaces
— Banking/interleaving, multiporting

* Ignoring cost, a well-designed system should never be bandwidth-limited
— Can’tignore cost!

* Bandwidth improvement usually increases latency
— No free lunch

* Hierarchies decrease bandwidth demand to lower levels
— Serve as traffic filters: a hit in L1 is filtered from L2

* Parallelism puts more demand on bandwidth

* If average b/w demand is not met => infinite queues
— Bursts are smoothed by queues

* If burst is much larger than average => long queue

— Eventually increases delay to unacceptable levels

Advanced Memory Hierarchy

Coherent Memory Interface

Evaluation methods

Better miss rate: skewed associative caches, victim caches
Reducing miss costs through software restructuring

Higher bandwidth: Lock-up free caches, superscalar caches
Beyond simple blocks

Multilevel caches

Prefetching, software prefetching

Main Memory, DRAM

Virtual Memory, TLBs

Interaction of caches, virtual memory

Multilevel Caches

¢ Ubiquitous in high-performance processors

— Gap between L1 (core frequency) and main memory too high

— Level 2 usually on chip, level 3 on or off-chip, level 4 off chip
¢ Inclusion in multilevel caches

— Multi-level inclusion holds if L2 cache is superset of L1

— Can handle virtual address synonyms

— Filter coherence traffic: if L2 misses, L1 needn’t see snoop

— Makes L1 writes simpler

* For both write-through and write-back

Multilevel Inclusion
‘ 121314 - 1234 -

Example: local LRU not sufficient to guarantee
inclusion

— Assume L1 holds two and L2 holds three blocks
— Both use local LRU

Final state: L1 contains 1, L2 does not

— Inclusion not maintained

Different block sizes also complicate inclusion

Multilevel Inclusion
. 121,314 - 1234 -

« Inclusion takes effort to maintain

— Make L2 cache have bits or pointers giving L1 contents
— Invalidate from L1 before replacing from L2
— Inexample, removing 1 from L2 also removes it from L1
* Number of pointers per L2 block
— L2 blocksize/L1 blocksize
Reading list: [Wang, Baer, Levy ISCA 1989]

Multilevel Miss Rates

Miss rates of lower level caches

— Affected by upper level filtering effect

— LRU becomes LRM, since “use” is “miss”

— Can affect miss rates, though usually not important
Miss rates reported as:

— Miss per instruction

— Global miss rate

— Local miss rate

— “Solo” miss rate

¢ L2 cache sees all references (unfiltered by L1)

ECE/CS 752:Advanced Computer Architecture |

Advanced Memory Hierarchy

* Coherent Memory Interface

* Evaluation methods

* Better miss rate: skewed associative caches, victim caches
¢ Reducing miss costs through software restructuring

* Higher bandwidth: Lock-up free caches, superscalar caches
¢ Beyond simple blocks

* Two level caches

* Prefetching, software prefetching

* Main Memory, DRAM

Virtual Memory, TLBs

¢ Interaction of caches, virtual memory

Prefetching

¢ Even “demand fetching” prefetches other
words in block

— Spatial locality
e Prefetching is useless

— Unless a prefetch costs less than demand miss
* Ideally, prefetches should

— Always get data before it is referenced

— Never get data not used

— Never prematurely replace data

— Never interfere with other cache activity

Software Prefetching

e Use compiler to try to
— Prefetch early
— Prefetch accurately
* Prefetch into
— Register (binding)
* Use normal loads? Stall-on-use (Alpha 21164)
* What about page faults? Exceptions?
— Caches (non-binding) — preferred

¢ Needs ISA support

Software Prefetching
¢ For example:
doj=1, cols
doii = 1 to rows by BLOCK

prefetch (&(x[i,j])+BLOCK) # prefetch one block
ahead

doi=iitoii + BLOCK-1
sum = sum + x[i,j]
¢ How many blocks ahead should we prefetch?
— Affects timeliness of prefetches

— Must be scaled based on miss latency

Hardware Prefetching

¢ What to prefetch
— One block spatially ahead
— N blocks spatially ahead
— Based on observed stride
¢ When to prefetch
— On every reference
« Hard to find if block to be prefetched already in the cache
— On every miss
* Better than doubling block size — why?
— Tagged

* Prefetch when prefetched item is referenced

Prefetching for Pointer-based Data Structures

¢ What to prefetch
— Next level of tree: n+1, n+2, n+?
* Entire tree? Or just one path
— Next node in linked list: n+1, n+2, n+?
— Jump-pointer prefetching

— Markov prefetching

* How to prefetch
— Software places jump pointers in data structure
— Hardware scans blocks for pointers

« Content-driven data prefetching

ECE/CS 752:Advanced Computer Architecture |

Stream or Prefetch Buffers

« Prefetching causes capacity and conflict misses (pollution)
— Can displace useful blocks
* Aimed at compulsory and capacity misses
* Prefetch into buffers, NOT into cache
— On miss start filling stream buffer with successive lines
— Check both cache and stream buffer
« Hitin stream buffer => move line into cache (promote)
* Miss in both => clear and refill stream buffer
* Performance
— Very effective for |-caches, less for D-caches
— Multiple buffers to capture multiple streams (better for D-caches)

* Can use with any prefetching scheme to avoid pollution

Advanced Memory Hierarchy

Coherent Memory Interface

Evaluation methods

Better miss rate: skewed associative caches, victim caches
Reducing miss costs through software restructuring

Higher bandwidth: Lock-up free caches, superscalar caches
Beyond simple blocks

Two level caches

Prefetching, software prefetching

Main Memory, DRAM

Virtual Memory, TLBs

Interaction of caches, virtual memory

Main Memory

DRAM chips

Memory organization
—Interleaving
—Banking

Memory controller design

DRAM Chip Organization

Bitlines

Word
Lines

Row

Transistor
Address™™

Cell Bitline
| 4 Wordline

=k Jeapacitor

Row Decoder

Column
Address———®

1
olumn Decoder

1
Data bus

Optimized for density, not speed e Cycle time roughly twice

Current generation DRAM

« Data stored as charge in capacitor

access time

DRAM Chip Organization

Bitlines
Word
_ Lines
8
S Memory
Row 8 Transistor
] Cell Bitline
Address ™| vy
H | A Wordline
&
™ B oapacior
Column

olumn Decoder

)
Data bus

Address———®

e Address pins are time-multiplexed

— 1Gbit, moving to 4 Gbit

— Row address strobe (RAS)

« Discharge on reads => destructive reads ® Need to precharge bitlines
* Charge leaks over time before access — 133 MHz synchronous interface — Column address strobe (CAS)

— refresh every few ms — Data bus 2, 4, 8, 16 bits

DRAM Chip Organization Simple Main Memory

Bitlines
Word .
. Lines ¢ Consider these parameters:
w ° Memory .
Z?'dref’é by Bitine _ rensieer — 1 cycle to send address
Wordline
* H . — 6 cycles to access each word
apacitor
Sense Amps — 1 cycle to send word back
1T 1717
* Miss penalty for a 4-word block
Column I I p y
A”d’955_> —(1+6+1)X4_32
]
Data bus
+ New RAS results in: o NewCAS ¢ How can we speed this up?

— Bitline precharge _ Row buffer read

— Row decode, sense
) — Much faster (3x)
— Row buffer write (up to 8K)

e Streaming row accesses desirable

ECE/CS 752:Advanced Computer Architecture |

Wider(Parallel) Main Memory

* Make memory wider
— Read out all words in parallel
¢ Memory parameters
— 1cycle to send address
— 6 to access a double word
— 1cycle to send it back
¢ Miss penalty for 4-word block: 1+6+1 = 16
¢ Costs
— Wider bus

— Larger minimum expansion unit (e.g. paired DIMMs)

Interleaved Main Memory
e Break memory into M banks
- Word Aisin Amod M at A divM

e Banks can operate concurrently and
independently

Byte in Word
Word in Doubleword,
Bank

Doubleword in bank

* Each bank has
— Private address lines
— Private data lines

— Private control lines (read/write)

Interleaved and Parallel Organization
Serial

Parallel

SO
? P

Non-interleaved

S PR
o F o S

s %

Interleaved Memory Summary

Parallel memory adequate for sequential accesses
— Load cache block: multiple sequential words
— Good for writeback caches

* Banking useful otherwise
— If many banks, choose a prime number
e Can also do both

— Within each bank: parallel memory path
— Across banks

« Can support multiple concurrent cache accesses (nonblocking)

Memory Controller Organization

ReadQ WriteQ RespQ

_ — Memory
f— — = Controller
] 7 Y

*commands Y pata *Commands Yoata

Banko] Banki| 1
1

1

10000 Fooonn

DIMM(s) DIMM(s)

ECE/CS 752:Advanced Computer Architecture |

Memory Controller Organization

* ReadQ
— Buffers multiple reads, enables scheduling optimizations
* WriteQ
— Buffers writes, allows reads to bypass writes, enables scheduling opt.
¢ RespQ
— Buffers responses until bus available
* Scheduler
— FIFO? Or schedule to maximize for row hits (CAS accesses)
— Scan queues for references to same page
— Looks similar to issue queue with page number broadcasts for tag match
— Fairness when sharing a memory controller [Nesbit, 2006]

* Buffer

— Builds transfer packet from multiple memory words to send over
processor bus

Advanced Memory Hierarchy

* Coherent Memory Interface

* Evaluation methods

s Better miss rate: skewed associative caches, victim caches
* Reducing miss costs through software restructuring

* Higher bandwidth: Lock-up free caches, superscalar caches
* Beyond simple blocks

* Two level caches

« Prefetching, software prefetching

* Main Memory, DRAM

¢ Virtual Memory, TLBs

* Interaction of caches, virtual memory

Main Memory and Virtual Memory

¢ Use of virtual memory
— Main memory becomes another level in the memory
hierarchy
— Enables programs with address space or working set that
exceed physically available memory
* No need for programmer to manage overlays, etc.
* Sparse use of large address space is OK
— Allows multiple users or programs to timeshare limited
amount of physical memory space and address space
¢ Bottom line: efficient use of expensive resource, and
ease of programming

Virtual Memory

* Enables
— Use more memory than system has
— Think program is only one running
* Don’t have to manage address space usage across programs
* E.g. think it always starts at address Ox0
— Memory protection
* Each program has private VA space: no-one else can clobber it
— Better performance

« Start running a large program before all of it has been loaded from
disk

Virtual Memory — Placement

¢ Main memory managed in larger blocks
— Page size typically 4K — 16K

¢ Fully flexible placement; fully associative
— Operating system manages placement
— Indirection through page table
— Maintain mapping between:

 Virtual address (seen by programmer)
* Physical address (seen by main memory)

Virtual Memory — Placement

* Fully associative implies expensive lookup?
— In caches, yes: check multiple tags in parallel

¢ In virtual memory, expensive lookup is
avoided by using a level of indirection
— Lookup table or hash table
— Called a page table

ECE/CS 752:Advanced Computer Architecture |

Virtual Memory — Identification

Virtual Address Physical Address |Dirty bit
0x20004000 0x2000 Y/N

¢ Similar to cache tag array
— Page table entry contains VA, PA, dirty bit
¢ Virtual address:
— Matches programmer view; based on register values

— Can be the same for multiple programs sharing same
system, without conflicts

¢ Physical address:
— Invisible to programmer, managed by O/S
— Created/deleted on demand basis, can change

10

Virtual Memory — Replacement

* Similar to caches:
— FIFO
— LRU; overhead too high
» Approximated with reference bit checks
* “Clock algorithm” intermittently clears all bits
—Random
¢ 0/S decides, manages
— (CS537

Virtual Memory Implementation

¢ Caches have fixed policies, hardware FSM for
control, pipeline stall

* VM has very different miss penalties
— Remember disks are 10+ ms!

¢ Hence engineered differently

Address Translation

VA PA Dirty |Ref |Protection
0x20004000 |0x2000 |Y/N |Y/N |Read/Write/
Execute

0/S and hardware communicate via PTE
¢ How do we find a PTE?

— &PTE = PTBR + page number * sizeof(PTE)
— PTBR is private for each program

* Context switch replaces PTBR contents

Virtual Memory — Write Policy

* Write back
— Disks are too slow to write through

¢ Page table maintains dirty bit
— Hardware must set dirty bit on first write
— 0/S checks dirty bit on eviction

— Dirty pages written to backing store
* Disk write, 10+ ms

Page Faults

e Avirtual memory miss is a page fault
— Physical memory location does not exist
— Exception is raised, save PC
— Invoke OS page fault handler

* Find a physical page (possibly evict)
* Initiate fetch from disk

— Switch to other task that is ready to run
— Interrupt when disk access complete
— Restart original instruction

¢ Why use O/S and not hardware FSM?

Address Translation

ECE/CS 752:Advanced Computer Architecture |

11

Page Table Size Multilevel Page Table

¢ How big is page table?
— 232 /4K * 4B = 4M per program (!)
— Much worse for 64-bit machines l
¢ To make it smaller
— Use limit register(s)
« If VA exceeds limit, invoke O/S to grow region

— Use a multi-level page table
— Make the page table pageable (use VM)

Hashed Page Table Hashed Page Table

¢ Use a hash table or inverted page table
— PT contains an entry for each real address
* Instead of entry for every virtual address
— Entry is found by hashing VA

— Oversize PT to reduce collisions: #PTE = 4 x (#phys.
pages)

High-Performance VM Translation Lookaside Buffer

Virtual page no.

Tag] Index [POI PO
H - e
* VA translation [
. Virtual
— Additional memory reference to PTE PPN | Tag pag[:nno. PPN__| Tag |>-()
) . 11 >0
— Each instruction fetch/load/store now 2 memory O
references N I B o ©
* Or more, with multilevel table or hash collisions
— Even if PTE are cached, still slow I e
* Hence, use special-purpose cache for PTEs AP S N Page oL O
.) Physical page no. ysical
— Called TLB (translation lookaside buffer) (Physical address) page no. (Physical address)
— Caches PTE entries

@))
— Exploits temporal and spatial locality (just a cache)

* Set associative (a) or fully associative (b)
¢ Both widely employed

ECE/CS 752:Advanced Computer Architecture |

Interaction of TLB and Cache

Virtual Virtual page no. (VPN)

address l Tag { Index | Page offset (PO) l
(n=v + g bits) +
Lo L
TLB g
P
Physical Physical page no. (PPN) | PO
address T
(m = p + g bits) Tag | Index I BO 510:k -
lock offse
I TR
D-cache)
Data

¢ Serial lookup: first TLB then D-cache
¢ Excessive cycle time

Virtual Memory Protection

* Each process/program has private virtual address
space
— Automatically protected from rogue programs
¢ Sharing is possible, necessary, desirable
— Avoid copying, staleness issues, etc.
¢ Sharing in a controlled manner
— Grant specific permissions
* Read
* Write
* Execute
¢ Any combination

Virtual page no. (VPN)

Virtually Indexed Physically Tagged L1

Virtual page no. (VPN)
T

Tog | Index | Pageoffset(P0) | [Tag | Index | Page offset |

T
! Index 1 BO

i b

(D-cache)

PPN Data

(S—> Hit/miss
Parallel lookup of TLB and cache

Faster cycle time
Index bits must be untranslated

— Restricts size of n-associative cache to n x (virtual page size)
— E.g. 4-way SA cache with 4KB pages max. size is 16KB

Protection

Process model

— Privileged kernel

— Independent user processes

Privileges vs. policy

— Architecture provided primitives

— OS implements policy

— Problems arise when h/w implements policy

Separate policy from mechanism!

Protection Primitives

User vs kernel

— at least one privileged mode

— usually implemented as mode bits

How do we switch to kernel mode?

— Protected “gates” or system calls

— Change mode and continue at pre-determined address
Hardware to compare mode bits to access rights
— Only access certain resources in kernel mode

— E.g. modify page mappings

ECE/CS 752:Advanced Computer Architecture |

Protection Primitives

Base and bounds
— Privileged registers

base <= address <= bounds
Segmentation
— Multiple base and bound registers
— Protection bits for each segment
Page-level protection (most widely used)
— Protection bits in page entry table
— Cache them in TLB for speed

13

VM Sharing

¢ Share memory locations by:
— Map shared physical location into both address
spaces:

* E.g. PA OXxCOODA becomes:
— VA 0x2DOO0O0DA for process 0
— VA 0x4DOO0O0DA for process 1

— Either process can read/write shared location

¢ However, causes synonym problem

VA Synonyms

¢ Virtually-addressed caches are desirable
— No need to translate VA to PA before cache lookup
— Faster hit time, translate only on misses
* However, VA synonyms cause problems
— Can end up with two copies of same physical line
— Causes coherence problems [Wang, Baer reading]
* Solutions:
— Flush caches/TLBs on context switch
— Extend cache tags to include PID
« Effectively a shared VA space (PID becomes part of address)
— Enforce global shared VA space (PowerPC)
¢ Requires another level of addressing (EA->VA->PA)

Summary: Advanced Memory Hierarchy

* Coherent Memory Interface

* Evaluation methods

* Better miss rate: skewed associative caches, victim caches
* Reducing miss costs through software restructuring

* Higher bandwidth: Lock-up free caches, superscalar caches
* Beyond simple blocks

¢ Two level caches

* Prefetching, software prefetching

* Main Memory, DRAM

* Virtual Memory, TLBs

* Interaction of caches, virtual memory

ECE/CS 752:Advanced Computer Architecture |

14

