
Advanced Caches

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen
and Mark Hill
Updated by Mikko Lipasti

Readings

• Read on your own:
– Review: Shen & Lipasti Chapter 3

– W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization of a two-level virtual-real cache
hierarchy, Proc. 16th ISCA, pp. 140-148, June 1989 (B6) Online PDF

– D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization, Proc. International
Symposium on Computer Architecture , May 1981 (B6). Online PDF

– Bruce Jacob, “The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake
It,” Synthesis Lectures on Computer Architecture 2009 4:1, 1-77. Online PDF

• Review:
– Andreas Sembrant, Erik Hagersten, David Black-Schaffer, “The Direct-to-Data (D2D)

cache: navigating the cache hierarchy with a single lookup,” Proc. ISCA 2014, June
2014. Online PDF

– Steven Pelley, Peter Chen, and Thomas Wenisch, "Memory Persistency," Proc. ISCA 2014,
June 2014. Online PDF

2

http://portal.acm.org/ft_gateway.cfm?id=74942&type=pdf&coll=GUIDE&dl=GUIDE&CFID=39860564&CFTOKEN=33325181
http://delivery.acm.org/10.1145/290000/285979/p195-kroft.pdf?key1=285979&key2=6024750111&coll=GUIDE&dl=ACM&CFID=39861510&CFTOKEN=10590120
http://delivery.acm.org/10.1145/290000/285979/p195-kroft.pdf?key1=285979&key2=6024750111&coll=GUIDE&dl=ACM&CFID=39861510&CFTOKEN=10590120
http://www.morganclaypool.com/doi/pdf/10.2200/S00201ED1V01Y200907CAC007
http://www.morganclaypool.com/doi/pdf/10.2200/S00201ED1V01Y200907CAC007
http://dl.acm.org/citation.cfm?id=2665694
http://dl.acm.org/citation.cfm?id=2665694
http://dl.acm.org/citation.cfm?id=2665694
http://dl.acm.org/citation.cfm?id=2665712

Advanced Memory Hierarchy

• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Two level caches

Coherent Memory Interface

Coherent Memory Interface
• Load Queue

– Tracks inflight loads for aliasing, coherence

• Store Queue

– Defers stores until commit, tracks aliasing

• Storethrough Queue or Write Buffer or Store Buffer

– Defers stores, coalesces writes, must handle RAW

• MSHR

– Tracks outstanding misses, enables lockup-free caches [Kroft ISCA 91]

• Snoop Queue

– Buffers, tracks incoming requests from coherent I/O, other processors

• Fill Buffer

– Works with MSHR to hold incoming partial lines

• Writeback Buffer

– Defers writeback of evicted line (demand miss handled first)

Evaluation Methods - Counters

• Counts hits and misses in hardware

– see [Clark, TOCS 1983]

– Intel VTune tool

• Accurate

• Realistic workloads - system, user, everything

• Requires machine to exist

• Hard to vary cache parameters

• Experiments not deterministic

Evaluation Methods - Analytical

• Mathematical expressions

– Insight - can vary parameters

– Fast

– Absolute accuracy suspect for models with few
parameters

– Hard to determine many parameter values

– Not widely used today

Evaluation: Trace-Driven Simulation

program input data

execute and trace

discard output
trace file

run cache simulator

 input
cache parameters

compute effective access from miss ratio
repeat
as needed

input tcache, tmiss

Evaluation: Trace-Driven Simulation

• Experiments repeatable

• Can be accurate

• Much recent progress

• Reasonable traces are very large ~gigabytes

• Simulation can be time consuming

• Hard to say if traces representative

• Don’t model speculative execution

Evaluation: Execution-Driven Simulation

• Do full processor simulation each time

– Actual performance; with ILP miss rate means nothing

• Non-blocking caches

• Prefetches (timeliness)

• Pollution effects due to speculation

– No need to store trace

– Much more complicated simulation model

• Time-consuming - but good programming can
help

• Very common today

Advanced Memory Hierarchy

• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Two level caches

Seznec’s Skewed Associative Cache

• Alleviates conflict misses in a conventional set assoc cache

• If two addresses conflict in 1 bank, they conflict in the others too

– e.g., 3 addresses with same index bits will thrash in 2-way cache

• Solution: use different hash functions for each bank

• Works reasonably well: more robust conflict miss behavior

• But: how do you implement replacement policy?

Address

Hash0

Hash1

Jouppi’s Victim Cache
• Targeted at conflict misses

• Victim cache: a small fully associative cache

– holds victims replaced in direct-mapped or low-assoc

– LRU replacement

– a miss in cache + a hit in victim cache

• => move line to main cache

• Poor man’s associativity

– Not all sets suffer conflicts; provide limited capacity for conflicts

Address

Hash0

Jouppi’s Victim Cache
• Removes conflict misses, mostly useful for DM or 2-way

– Even one entry helps some benchmarks

– I-cache helped more than D-cache

• Versus cache size

– Generally, victim cache helps more for smaller caches

• Versus line size

– helps more with larger line size (why?)

• Used in Pentium Pro (P6) I-cache

Address

Hash0

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

Software Restructuring
• If column-major (Fortran)

– x[i+1, j] follows x [i,j] in memory

– x[i,j+1] long after x[i,j] in memory

• Poor code

for i = 1, rows

 for j = 1, columns

 sum = sum + x[i,j]

• Conversely, if row-major (C/C++)

• Poor code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

C

o
n

ti
g

u
o

u
s
 a

d
d

re
s
s
e

s

Contiguous addresses

Software Restructuring
• Better column-major code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

• Optimizations - need to check if it
is valid to do them

– Loop interchange (used above)

– Blocking

– Etc.

• Hard: pointers, indirection,
unknown loop bounds, sparse
matrices

C
o

n
ti
g

u
o

u
s
 a

d
d

re
s
s
e

s

Advanced Memory Hierarchy

• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Two level caches

Superscalar Caches
• Increasing issue width => wider caches

• Parallel cache accesses are harder than parallel
functional units

• Fundamental difference:

– Caches have state, functional units don’t

– Operation thru one port affects future operations thru
others

• Several approaches used

– True multi-porting

– Multiple cache copies

– Virtual multi-porting

– Multi-banking (interleaving)

True Multiporting of SRAM

“Word” Lines
 -select a row

“Bit” Lines
 -carry data in/out

True Multiporting of SRAM

• Would be ideal

• Increases cache area

– Array becomes wire-dominated

• Slower access

– Wire delay across larger area

– Cross-coupling capacitance between wires

• SRAM access difficult to pipeline

Multiple Cache Copies

• Used in DEC Alpha 21164, IBM Power4

• Independent load paths

• Single shared store path

– May be exclusive with loads, or internally dual-ported

• Bottleneck, not practically scalable beyond 2 paths

• Provides some fault-tolerance

– Parity protection per copy

– Parity error: restore from known-good copy

– Avoids more complex ECC (no RMW for subword writes), still provides SEC

Load Port 0

Load Port 1

Store Port

Virtual Multiporting

• Used in IBM Power2 and DEC 21264

– Wave pipelining: pipeline wires WITHOUT latches

• Time-share a single port

• Not scalable beyond 2 ports

• Requires very careful array design to guarantee balanced paths

– Second access cannot catch up with first access

• Short path constraint limits maximum clock period

• Complicates and reduces benefit of speed binning

Port 0

Port 1

Multi-banking or Interleaving

• Used in Intel Pentium (8 banks)

• Need routing network

• Must deal with bank conflicts

– Bank conflicts not known till address generated

– Difficult in non-data-capture machine with speculative scheduling

• Replay – looks just like a cache miss

– Sensitive to bank interleave: fine-grained vs. coarse-grained

Port 0

Port 1

Bank 0

C
ro

s
s
b

a
r C

ro
s
s
b

a
r

Port 0

Port 1

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Combined Schemes

• Multiple banks with multiple ports

• Virtual multiporting of multiple banks

• Multiple ports and virtual multiporting

• Multiple banks with multiply virtually multiported
ports

• Complexity!

• No good solution known at this time

– Current generation superscalars get by with 1-3 ports

Advanced Memory Hierarchy

• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Two level caches

Sublines

• Break blocks into

– Address block associated with tag

– Transfer block to/from memory (subline, sub-block)

• Large address blocks

– Decrease tag overhead

– But allow fewer blocks to reside in cache (fixed mapping)

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Sublines
• Larger transfer block

– Exploit spatial locality

– Amortize memory latency

– But take longer to load

– Replace more data already cached (more conflicts)

– Cause unnecessary traffic

• Typically used in large L2/L3 caches to limit tag overhead

• Sublines tracked by MSHR during pending fill

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Latency vs. Bandwidth

• Latency can be handled by

– Hiding (or tolerating) it - out of order issue, nonblocking
cache

– Reducing it – better caches

• Parallelism helps to hide latency

– MLP – multiple outstanding cache misses overlapped

• But increases bandwidth demand

• Latency ultimately limited by physics

Latency vs. Bandwidth
• Bandwidth can be handled by “spending” more (hardware cost)

– Wider buses, interfaces

– Banking/interleaving, multiporting

• Ignoring cost, a well-designed system should never be bandwidth-limited

– Can’t ignore cost!

• Bandwidth improvement usually increases latency

– No free lunch

• Hierarchies decrease bandwidth demand to lower levels

– Serve as traffic filters: a hit in L1 is filtered from L2

• Parallelism puts more demand on bandwidth

• If average b/w demand is not met => infinite queues

– Bursts are smoothed by queues

• If burst is much larger than average => long queue

– Eventually increases delay to unacceptable levels

Advanced Memory Hierarchy

• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Multilevel caches

Multilevel Caches

• Ubiquitous in high-performance processors

– Gap between L1 (core frequency) and main memory too high

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip

• Inclusion in multilevel caches

– Multi-level inclusion holds if L2 cache is superset of L1

– Can handle virtual address synonyms

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop

– Makes L1 writes simpler

• For both write-through and write-back

Multilevel Inclusion

• Example: local LRU not sufficient to guarantee
inclusion

– Assume L1 holds two and L2 holds three blocks

– Both use local LRU

• Final state: L1 contains 1, L2 does not

– Inclusion not maintained

• Different block sizes also complicate inclusion

P
1

4

2

3

4

1,2,1,3,1,4 1,2,3,4

Multilevel Inclusion

• Inclusion takes effort to maintain

– Make L2 cache have bits or pointers giving L1 contents

– Invalidate from L1 before replacing from L2

– In example, removing 1 from L2 also removes it from L1

• Number of pointers per L2 block

– L2 blocksize/L1 blocksize

• Reading list: [Wang, Baer, Levy ISCA 1989]

P
1

4

2

3

4

1,2,1,3,1,4 1,2,3,4

Multilevel Miss Rates

• Miss rates of lower level caches

– Affected by upper level filtering effect

– LRU becomes LRM, since “use” is “miss”

– Can affect miss rates, though usually not important

• Miss rates reported as:

– Miss per instruction

– Global miss rate

– Local miss rate

– “Solo” miss rate

• L2 cache sees all references (unfiltered by L1)

Advanced Memory Hierarchy

• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Multilevel caches

