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Readings 

• Read on your own: 
– Review: Shen & Lipasti Chapter 3  

– W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization of a two-level virtual-real cache 
hierarchy, Proc. 16th ISCA, pp. 140-148, June 1989 (B6)  Online PDF 

– D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization, Proc. International 
Symposium on Computer Architecture , May 1981 (B6). Online PDF 

– Bruce Jacob, “The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake 
It,” Synthesis Lectures on Computer Architecture 2009 4:1, 1-77.  Online PDF 

• Review: 
– Andreas Sembrant, Erik Hagersten, David Black-Schaffer, “The Direct-to-Data (D2D) 

cache: navigating the cache hierarchy with a single lookup,” Proc. ISCA 2014, June 
2014. Online PDF 

– Steven Pelley, Peter Chen, and Thomas Wenisch, "Memory Persistency," Proc. ISCA 2014, 
June 2014. Online PDF 
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http://portal.acm.org/ft_gateway.cfm?id=74942&type=pdf&coll=GUIDE&dl=GUIDE&CFID=39860564&CFTOKEN=33325181
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Advanced Memory Hierarchy 

• Coherent Memory Interface 

• Evaluation methods 

• Better miss rate: skewed associative caches, victim caches 

• Reducing miss costs through software restructuring 

• Higher bandwidth: Lock-up free caches, superscalar caches 

• Beyond simple blocks 

• Two level caches 



Coherent Memory Interface 



Coherent Memory Interface 
• Load Queue 

– Tracks inflight loads for aliasing, coherence 

• Store Queue 

– Defers stores until commit, tracks aliasing 

• Storethrough Queue or Write Buffer or Store Buffer 

– Defers stores, coalesces writes, must handle RAW 

• MSHR 

– Tracks outstanding misses, enables lockup-free caches [Kroft ISCA 91] 

• Snoop Queue 

– Buffers, tracks incoming requests from coherent I/O, other processors 

• Fill Buffer 

– Works with MSHR to hold incoming partial lines 

• Writeback Buffer 

– Defers writeback of evicted line (demand miss handled first) 



Evaluation Methods - Counters 

• Counts hits and misses in hardware 

– see [Clark, TOCS 1983] 

– Intel VTune tool 

• Accurate 

• Realistic workloads - system, user, everything 

• Requires machine to exist 

• Hard to vary cache parameters 

• Experiments not deterministic 



Evaluation Methods - Analytical 

• Mathematical expressions 

– Insight - can vary parameters 

– Fast 

– Absolute accuracy suspect for models with few 
parameters 

– Hard to determine many parameter values 

– Not widely used today 



Evaluation: Trace-Driven Simulation 

program input data

execute and trace

discard output
trace file

run cache simulator

        input 
cache parameters

compute effective access from miss ratio
repeat 
as needed

input tcache, tmiss



Evaluation: Trace-Driven Simulation 

• Experiments repeatable 

• Can be accurate 

• Much recent progress 

• Reasonable traces are very large ~gigabytes 

• Simulation can be time consuming 

• Hard to say if traces representative 

• Don’t model speculative execution 



Evaluation: Execution-Driven Simulation 

• Do full processor simulation each time 

– Actual performance; with ILP miss rate means nothing 

• Non-blocking caches 

• Prefetches (timeliness) 

• Pollution effects due to speculation 

– No need to store trace 

– Much more complicated simulation model 

• Time-consuming - but good programming can 
help 

• Very common today 
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Seznec’s Skewed Associative Cache 

• Alleviates conflict misses in a conventional set assoc cache 

• If two addresses conflict in 1 bank, they conflict in the others too 

– e.g., 3 addresses with same index bits will thrash in 2-way cache 

• Solution: use different hash functions for each bank 

• Works reasonably well: more robust conflict miss behavior 

• But: how do you implement replacement policy? 

Address 

Hash0 

Hash1 



Jouppi’s Victim Cache 
• Targeted at conflict misses 

• Victim cache: a small fully associative cache 

– holds victims replaced in direct-mapped or low-assoc 

– LRU replacement 

– a miss in cache + a hit in victim cache  

• => move line to main cache 

• Poor man’s associativity 

– Not all sets suffer conflicts; provide limited capacity for conflicts 

Address 

Hash0 



Jouppi’s Victim Cache 
• Removes conflict misses, mostly useful for DM or 2-way 

– Even one entry helps some benchmarks 

– I-cache helped more than D-cache 

• Versus cache size 

– Generally, victim cache helps more for smaller caches 

• Versus line size 

– helps more with larger line size (why?) 

• Used in Pentium Pro (P6) I-cache 

Address 

Hash0 



Advanced Memory Hierarchy 
• Coherent Memory Interface 

• Evaluation methods 

• Better miss rate: skewed associative caches, victim caches 

• Reducing miss costs through software restructuring 

• Higher bandwidth: Lock-up free caches, superscalar caches 

• Beyond simple blocks 

• Two level caches 

• Prefetching, software prefetching 

• Main Memory, DRAM 

• Virtual Memory, TLBs 

• Interaction of caches, virtual memory 



Software Restructuring 
• If column-major (Fortran) 

– x[i+1, j] follows x [i,j] in memory 

– x[i,j+1] long after x[i,j] in memory 

• Poor code 

for i = 1, rows 

   for j = 1, columns 

      sum = sum + x[i,j] 

• Conversely, if row-major (C/C++) 

• Poor code 

for j = 1, columns 

   for i = 1, rows 

      sum = sum + x[i,j] 
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Contiguous addresses 



Software Restructuring 
• Better column-major code 

for j = 1, columns 

   for i = 1, rows 

      sum = sum + x[i,j] 

• Optimizations - need to check if it 
is valid to do them 

– Loop interchange (used above) 

– Blocking 

– Etc. 

• Hard: pointers, indirection, 
unknown loop bounds, sparse 
matrices 
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Superscalar Caches 
• Increasing issue width => wider caches 

• Parallel cache accesses are harder than parallel 
functional units 

• Fundamental difference:  

– Caches have state, functional units don’t 

– Operation thru one port affects future operations thru 
others 

• Several approaches used 

– True multi-porting 

– Multiple cache copies 

– Virtual multi-porting 

– Multi-banking (interleaving) 



True Multiporting of SRAM 

“Word” Lines 
 -select a row 

“Bit” Lines 
 -carry data in/out 



True Multiporting of SRAM 

• Would be ideal 

• Increases cache area 

– Array becomes wire-dominated 

• Slower access 

– Wire delay across larger area 

– Cross-coupling capacitance between wires 

• SRAM access difficult to pipeline 



Multiple Cache Copies 

• Used in DEC Alpha 21164, IBM Power4 

• Independent load paths 

• Single shared store path 

– May be exclusive with loads, or internally dual-ported 

• Bottleneck, not practically scalable beyond 2 paths 

• Provides some fault-tolerance 

– Parity protection per copy 

– Parity error: restore from known-good copy 

– Avoids more complex ECC (no RMW for subword writes), still provides SEC 

Load Port 0 

Load Port 1 

Store Port 



Virtual Multiporting 

• Used in IBM Power2 and DEC 21264  

– Wave pipelining: pipeline wires WITHOUT latches 

• Time-share a single port 

• Not scalable beyond 2 ports 

• Requires very careful array design to guarantee balanced paths 

– Second access cannot catch up with first access 

• Short path constraint limits maximum clock period 

• Complicates and reduces benefit of speed binning 

Port 0 

Port 1 



Multi-banking or Interleaving 

• Used in Intel Pentium (8 banks) 

• Need routing network 

• Must deal with bank conflicts 

– Bank conflicts not known till address generated 

– Difficult in non-data-capture machine with speculative scheduling 

• Replay – looks just like a cache miss 

– Sensitive to bank interleave: fine-grained vs. coarse-grained 

Port 0 

Port 1 

Bank 0 
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Combined Schemes 

• Multiple banks with multiple ports 

• Virtual multiporting of multiple banks 

• Multiple ports and virtual multiporting 

• Multiple banks with multiply virtually multiported 
ports 

• Complexity! 

• No good solution known at this time 

– Current generation superscalars get by with 1-3 ports 
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Sublines 

• Break blocks into 

– Address block associated with tag 

– Transfer block to/from memory (subline, sub-block) 

• Large address blocks 

– Decrease tag overhead 

– But allow fewer blocks to reside in cache (fixed mapping) 

Tag Subline 0 Subline 1 Subline 2 Subline 3 

Subline Valid Bits 

Tag Subline 0 Subline 1 Subline 2 Subline 3 

Tag Subline 0 Subline 1 Subline 2 Subline 3 

Tag Subline 0 Subline 1 Subline 2 Subline 3 



Sublines 
• Larger transfer block 

– Exploit spatial locality 

– Amortize memory latency 

– But take longer to load 

– Replace more data already cached (more conflicts) 

– Cause unnecessary traffic 

• Typically used in large L2/L3 caches to limit tag overhead 

• Sublines tracked by MSHR during pending fill 

Tag Subline 0 Subline 1 Subline 2 Subline 3 

Subline Valid Bits 

Tag Subline 0 Subline 1 Subline 2 Subline 3 

Tag Subline 0 Subline 1 Subline 2 Subline 3 

Tag Subline 0 Subline 1 Subline 2 Subline 3 



Latency vs. Bandwidth 

• Latency can be handled by 

– Hiding (or tolerating) it - out of order issue, nonblocking 
cache 

– Reducing it – better caches 

• Parallelism helps to hide latency 

– MLP – multiple outstanding cache misses overlapped  

• But increases bandwidth demand 

• Latency ultimately limited by physics 



Latency vs. Bandwidth 
• Bandwidth can be handled by “spending” more (hardware cost) 

– Wider buses, interfaces 

– Banking/interleaving, multiporting 

• Ignoring cost, a well-designed system should never be bandwidth-limited 

– Can’t ignore cost! 

• Bandwidth improvement usually increases latency 

– No free lunch 

• Hierarchies decrease bandwidth demand to lower levels 

– Serve as traffic filters: a hit in L1 is filtered from L2 

• Parallelism puts more demand on bandwidth 

• If average b/w demand is not met => infinite queues 

– Bursts are smoothed by queues 

• If burst is much larger than average => long queue 

– Eventually increases delay to unacceptable levels 
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Multilevel Caches 

• Ubiquitous in high-performance processors 

– Gap between L1 (core frequency) and main memory too high 

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip 

• Inclusion in multilevel caches 

– Multi-level inclusion holds if L2 cache is superset of L1 

– Can handle virtual address synonyms 

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop 

– Makes L1 writes simpler 

• For both write-through and write-back 



Multilevel Inclusion 

• Example: local LRU not sufficient to guarantee 
inclusion 

– Assume L1 holds two and L2 holds three blocks 

– Both use local LRU 

• Final state: L1 contains 1, L2 does not 

– Inclusion not maintained 

• Different block sizes also complicate inclusion 
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Multilevel Inclusion 

• Inclusion takes effort to maintain 

– Make L2 cache have bits or pointers giving L1 contents 

– Invalidate from L1 before replacing from L2 

– In example, removing 1 from L2 also removes it from L1 

• Number of pointers per L2 block 

– L2 blocksize/L1 blocksize 

• Reading list: [Wang, Baer, Levy ISCA 1989] 

P 
1 

4 

2 

3 

4 

1,2,1,3,1,4 1,2,3,4 



Multilevel Miss Rates 

• Miss rates of lower level caches 

– Affected by upper level filtering effect 

– LRU becomes LRM, since “use” is “miss” 

– Can affect miss rates, though usually not important 

• Miss rates reported as: 

– Miss per instruction 

– Global miss rate 

– Local miss rate 

– “Solo” miss rate 

• L2 cache sees all references (unfiltered by L1) 
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