
Advanced Microarchicture
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes by Ilhyun Kim
Updated by Mikko Lipasti

Readings
• Read on your own:

– I. Kim and M. Lipasti, “Understanding Scheduling Replay Schemes,” in Proceedings of the 10th
International Symposium on High-performance Computer Architecture (HPCA-10), February
2004.

– Srikanth Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, and Mike Upton, “Continual
Flow Pipelines”, in Proceedings of ASPLOS 2004, October 2004.

– Ahmed S. Al-Zawawi, Vimal K. Reddy, Eric Rotenberg, Haitham H. Akkary, “Transparent Control
Independence,” in Proceedings of ISCA-34, 2007.

• To be discussed in class:
– Review by 11/6/2017: T. Shaw, M. Martin, A. Roth, “NoSQ: Store-Load Communication without

a Store Queue, ” in Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, 2006.

– Review by 11/8/2017: Andreas Sembrant et al., “Long term parking (LTP): criticality-aware
resource allocation in OOO processors,” Proc of MICRO-48, December 2015.

– Review by 11/10/2017: Arthur Perais and André Seznec. 2014. EOLE: paving the way for an
effective implementation of value prediction. In Proceeding of the 41st Annual International
Symposium on Computer Architecture (ISCA '14). IEEE Press, Piscataway, NJ, USA, 481-
492. Online PDF

https://dl.acm.org/citation.cfm?id=2678373.2665742

Outline
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

Memory Dataflow

Scalable Load/Store Queues

• Load queue/store queue
– Large instruction window: many loads and stores

have to be buffered (25%/15% of mix)
– Expensive searches

• positional-associative searches in SQ,
• associative lookups in LQ

– coherence, speculative load scheduling

– Power/area/delay are prohibitive

Store Queue/Load Queue Scaling

• Multilevel store queue [Akkary et al., MICRO 03]

• Bloom filters (quick check for independence)
[Sethumadhavan et al., MICRO 03]

• Eliminate associative load queue via replay
[Cain, ISCA 2004]

– Issue loads again at commit, in order
– Check to see if same value is returned
– Filter load checks for efficiency:

• Most loads don’t issue out of order (no speculation)
• Most loads don’t coincide with coherence traffic

Store Vulnerability Window (SVW)
[Roth, ISCA 05]

• Assign sequence numbers to stores
• Track writes to cache with sequence numbers
• Efficiently filter out safe loads/stores by only

checking against writes in vulnerability
window
– At dispatch, load captures SN of oldest

uncommitted store
– At commit, if cache SN is older, then load is safe

– Stores write SN to bloom filter to make check cheaper

– Otherwise, load gets replayed at commit

NoSQ
[Sha et al., MICRO 06]

• Rely on load/store alias prediction to directly
connect dependent pairs
– Memory cloaking [Moshovos/Sohi, ISCA 1997]
– More accurate, path-dependent predictor

• Use SVW technique to check
– Replay load only if necessary
– Train load/store alias predictor

Store/Load Optimizations

• Several other similar concurrent proposals
– DMDC [Castro et al., MICRO 06]

– Fire-and-forget [Subramanian/Loh, MICRO 06]

• Weakness: predictor still fails
– Glass jaw: should fail gracefully, not fall off a cliff
– Risk of new/unknown workload that is

unpredictable

Outline
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

Memory-Level Parallelism
[Glew, ASPLOS 98 “Wild and Crazy Ideas Session”]

• Tolerate/overlap memory latency
– Once first miss is encountered, find another one

• Naïve solution
– Implement a very large ROB, IQ, LSQ
– Power/area/delay make this infeasible

• Instead, build virtual instruction window

Runahead Execution
• Use poison bits to eliminate miss-dependent load

program slice
– Forward load slice processing is a very old idea

• Massive Memory Machine [Garcia-Molina et al. 84]

• Datascalar [Burger, Kaxiras, Goodman 97]

– Runahead proposed by [Dundas, Mudge 97]

• Checkpoint state, keep running beyond miss
• When miss completes, return to checkpoint

– May need runahead cache for store/load communication
[Mutlu et al, HPCA 03]

• All runahead activity is wasted (re-execute
everything)

Waiting Instruction Buffer
[Lebeck et al. ISCA 2002]

• Capture forward load slice in separate buffer
– Propagate poison bits to identify slice

• Relieve pressure on issue queue
• Reinsert instructions when load completes
• Very similar to Intel Pentium 4 replay mechanism

– But not publicly known at the time

• Makes recovery from load latency mispredicts
easier/cheaper

• Scope still limited by ROB size

Continual Flow Pipelines
[Srinivasan et al. ASPLOS 2004]

• Slice buffer extension of WIB
– Store operands in slice buffer as well to free up ROB/buffer

entries in OOO window
– Also relieve pressure on rename/physical registers

• Applicable to
– data-capture machines (Intel P6) or
– physical register file machines (Pentium 4)

• iCFP extends idea to in-order CPUs [Hilton et al., HPCA 09]

• Challenge: how to buffer loads/stores
– See [Gandhi et al, ISCA 05]

Long Term Parking
[Sembrant et al., MICRO 2015]

• Proactively defers allocation of microarchitectural
resources to non-critical instructions
– WIB, CFP are reactive (after miss occurs)

• Relies on predictor, LTP structure

Outline
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

Register Dataflow

Instruction scheduling

• A process of mapping a series of instructions into
execution resources
– Decides when and where an instruction is executed

 Data dependence graph
1

2 3 4

5 6

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

 Mapped to two FUs

Instruction scheduling

• A set of wakeup and select operations
– Wakeup

• Broadcasts the tags of parent instructions selected
• Dependent instruction gets matching tags, determines if source

operands are ready
• Resolves true data dependences

– Select
• Picks instructions to issue among a pool of ready instructions
• Resolves resource conflicts

– Issue bandwidth
– Limited number of functional units / memory ports

Scheduling loop

• Basic wakeup and select operations

== == OROR

readyL tagL readyRtagR

== == OROR

readyL tagL readyRtagR

tag W tag 1…

… …

ready - request
request n

grant n

grant 0
request 0

grant 1
request 1

……

selected

issue
to FU

broadcast the tag
of the selected inst

Select logic Wakeup logic

scheduling
loop

Wakeup and Select

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

Select 1
Wakeup 2,3,4

Wakeup / select

Select 2, 3
Wakeup 5, 6

Select 4, 5
Wakeup 6

Select 6

Ready inst
to issue

1

2, 3, 4

4, 5

6

1

2 3 4

5 6

Scheduling Atomicity

• Operations in the scheduling loop must occur within a single
clock cycle
– For back-to-back execution of dependent instructions

n

n+1

n+2

n+3

n+4

select 1

wakeup 2, 3

select 2, 3

wakeup 4

select 4

select 1
wakeup 2, 3

Select 2, 3
wakeup 4

Select 4

Atomic scheduling Non-Atomic
2-cycle scheduling

cycle

1

4

1

2 3

4

2 3

Implication of scheduling atomicity

• Pipelining is a standard way to improve clock
frequency

• Hard to pipeline instruction scheduling logic without
losing ILP
– ~10% IPC loss in 2-cycle scheduling
– ~19% IPC loss in 3-cycle scheduling

• A major obstacle to building high-frequency
microprocessors

Scheduling atomicity
& non-data-capture scheduler

• Multi-cycle scheduling loop

• Scheduling atomicity is not maintained
– Separated by extra pipeline stages (Disp, RF)
– Unable to issue dependent instructions consecutively

 solution: speculative scheduling

Fetch Decode Sched
/Exe Writeback Commit

Atomic Sched/Exe

Fetch Decode Schedule Dispatch RF Exe Writeback Commit

wakeup/
select

Fetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback Commit

Wakeup
/Select

Fetch Decode Schedule Dispatch RF Exe Writeback Commit

Wakeup
/Select

Speculative Scheduling
• Speculatively wakeup dependent instructions even before the parent

instruction starts execution
– Keep the scheduling loop within a single clock cycle

• But, nobody knows what will happen in the future

• Source of uncertainty in instruction scheduling: loads
– Cache hit / miss, bank conflict
– Store-to-load aliasing
 eventually affects timing decisions

• Scheduler assumes that all types of instructions have pre-determined
fixed latencies
– Load instructions are assumed to have a common case (over 90% in general)

$DL1 hit latency
– If incorrect, subsequent (dependent) instructions are replayed

Speculative Scheduling
• Overview

Spec wakeup
/select

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Spec wakeup
/select

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Latency Changed!!

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Re-schedule
when latency mispredicted

Invalid input value

Speculatively issued instructions

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

 Unlike the original Tomasulo’s algorithm
 Instructions are scheduled BEFORE actual execution occurs
 Assumes instructions have pre-determined fixed latencies

 ALU operations: fixed latency
 Load operations: assumes $DL1 latency (common case)

Scheduling replay
• Speculation needs verification / recovery

– There’s no free lunch

• If the actual load latency is longer (i.e. cache miss) than what
was speculated
– Best solution (disregarding complexity): replay data-dependent

instructions issued under load shadow

verification flow

Fetch Decode Rename Queue Sched Disp Disp RF RF Exe Retire
/ WB CommitRename

instruction flow

Cache miss
detected

Wavefront propagation

• Speculative execution wavefront
– speculative image of execution (from scheduler’s perspective)

• Both wavefronts propagate along dependence edges at the same rate (1 level /
cycle)

– the real wavefront runs behind the speculative wavefront

• The load resolution loop delay complicates the recovery process
– scheduling miss is notified a couple of clock cycles later after issue

verification flow

Fetch Decode Rename Queue Sched Disp Disp RF RF Exe Retire
/ WB CommitRename

speculative execution
wavefront

real execution
wavefront

instruction flow

dependence
linking Data

linking

Load resolution feedback delay in
instruction scheduling

• Scheduling runs multiple clock cycles ahead of execution
– But, instructions can keep track of only one level of dependence at a

time (using source operand identifiers)

Broadcast
/ wakeup Select

Execution

Dispatch /
Payload

RF
Misc.

N
N

N-1

N-2

N-3

N-4
Time delay
between
sched and
feedback

recover
instructions
in this path

Issues in scheduling replay

• Cannot stop speculative wavefront propagation
– Both wavefronts propagate at the same rate
– Dependent instructions are unnecessarily issued under load misses

checker

Sched
/ Issue

Exe

cache miss
signalcycle n

cycle n+1

cycle n+2

cycle n+3

Requirements of scheduling replay

• Conditions for ideal scheduling replay
– All mis-scheduled dependent instructions are invalidated instantly
– Independent instructions are unaffected

• Multiple levels of dependence tracking are needed
– e.g. Am I dependent on the current cache miss?
– Longer load resolution loop delay  tracking more levels

 Propagation of recovery status should be faster than
speculative wavefront propagation

 Recovery should be performed on the transitive closure
of dependent instructions

load
miss

Scheduling replay schemes

• Alpha 21264: Non-selective replay
– Replays all dependent and independent instructions issued under load

shadow
– Analogous to squashing recovery in branch misprediction
– Simple but high performance penalty

• Independent instructions are unnecessarily replayed
Sched Disp RF Exe Retire

Invalidate & replay ALL
instructions in the load

shadow

LD

ADD

OR

AND
BR

LD

ADD

OR
AND

BR

LD

ADD

OR
AND

BR

miss
resolvedLD

ADD

OR
AND

BR

LD
ADD

OR

Cache
miss

AND
BR

Position-based selective replay

• Ideal selective recovery
– replay dependent instructions only

• Dependence tracking is managed in a matrix form
– Column: load issue slot, row: pipeline stages

merge
matices

ADD

0 0
0 0
0 0
0 1

OR

0 0
0 0
0 0
0 1

SLL

0 0
0 0
0 0
0 1

AND

0 0
0 0
1 0
0 1

XOR

0 0
0 0
1 0
0 0

LD

LD

ADD

OR XOR

ANDSLL

Integer
pipeline

Mem pipeline
(width 2)

Sched

Disp

RF

Exe

Retire

ADD
0 0
0 0
0 1
0 0

OR
0 0
0 0
0 1
0 0

XOR
0 0
1 0
0 0
0 0

LD

LD

OR

ANDSLL

ADD

XOR

SLL
0 0
0 0
0 1
0 0

AND
0 0
1 0
0 1
0 0

tag / dep info
broadcast

kill bus broadcast

killed killed killed killed

Cycle
n

Cycle
n+1

Sched

Disp

RF

Exe

Retire

1 0
0 1
0 0
1 0

bi
t m

er
ge

&
sh

ift

in
va

lid
at

e
if

bi
ts

 m
at

ch
in

 th
e

la
st

 ro
w

tagR

ReadyR

ReadyL

tagL =

=

Ki
ll

bu
s

ta
g

bu
s

de
pe

nd
en

ce
 in

fo
 b

us

Cache miss
Detected

Outline
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

Definition

• What is value prediction? Broadly, three
salient attributes:
1. Generate a speculative value (predict)
2. Consume speculative value (execute)
3. Verify speculative value (compare/recover)

• This subsumes branch prediction
Focus here on operand values

MICRO 2017 Test of Time Retrospective 35

A B

C

D

A B C D

Some History

• “Classical” value prediction
– Independently invented by 4 groups in 1995-1996
1. AMD (Nexgen): L. Widigen and E. Sowadsky, patent filed

March 1996, inv. March 1995
2. Technion: F. Gabbay and A. Mendelson, inv. sometime

1995, TR 11/96, US patent Sep 1997
3. CMU: M. Lipasti, C. Wilkerson, J. Shen, inv. Oct. 1995,

ASPLOS paper submitted March 1996, MICRO June 1996
4. Wisconsin: Y. Sazeides, J. Smith, Summer 1996

MICRO 2017 Test of Time Retrospective 36

Why?

• Possible explanations:
1. Natural evolution from branch prediction
2. Natural evolution from memoization
3. Natural evolution from rampant speculation

• Cache hit speculation
• Memory independence speculation
• Speculative address generation [Zero Cycle Loads – Austin/Sohi]

4. Improvements in tracing/simulation technology
• “There’s a lot of zeroes out there.” (C. Wilkerson)
• Values, not just instructions & addresses

– TRIP6000 [A. Martin-de-Nicolas, IBM]

MICRO 2017 Test of Time Retrospective 37

What Happened?
• Considerable academic interest

– Dozens of research groups, papers, proposals
• No industry uptake for a long time

– Intel (x86), IBM (PowerPC), HAL (SPARC) all failed
• Why?

– Modest performance benefit (< 10%)
– Power consumption

• Dynamic power for extra activity
• Static power (area) for prediction tables

– Complexity and correctness (risk)
• Subtle memory ordering issues [MICRO ’01]
• Misprediction recovery [HPCA ’04]

MICRO 2017 Test of Time Retrospective 38

Performance?

• Relationship between timely fetch and value
prediction benefit [Gabbay & Mendelson, ISCA’98]

Value prediction doesn’t help when the result can be
computed before the consumer instruction is fetched

• Accurate, high-bandwidth fetch helped
– Wide trace caches studied in late 1990s
– Much better branch prediction today (neural, TAGE)

• Industry was pursuing frequency, not ILP (GHz race)

MICRO 2017 Test of Time Retrospective 39

Future Adoption?
• Classical value prediction will only make it in the

context of a very different microarchitecture
– One that explicitly and aggressively exposes ILP

• Promising trends
– Deep pipelining craze is over
– High frequency mania is over

• Architects are pursuing ILP once again
– Value prediction may have another opportunity
– Rumors of 4 design teams considering it

MICRO 2017 Test of Time Retrospective 40

Some Recent Interest
• VTAGE [Perais/Seznec, HPCA 14]

– Solves many practical problems in the predictor

• EOLE [Perais/Seznec, ISCA 14]

– Value predicted operands reduce need for OoO
– Execute some ops early, some late, outside OoO
– Smaller, faster OoO window

• Load Value Approximation
[San Miguel/Badr/Enright Jerger, MICRO-47][Thwaites et al., PACT 2014]

• DLVP [Sheikh/Cain/Damodaran, MICRO-50]

MICRO 2017 Test of Time Retrospective 41

Early Execution

Introducing Early Execution

11/8/2017 Arthur Perais & André Seznec - ISCA 2014

VPred

Rename Dispatch Out-of-order
engineFetch Decode

Execute ready single-
cycle instructions in
parallel with Rename,
in-order.

Do not dispatch to the
IQ. - 42

Early Execution Hardware

11/8/2017 Arthur Perais & André Seznec - ISCA 2014

From Decode and Value Predictor

To Dispatch

Values come from:
• Decode (Immediate)

• Value Predictor
• Bypass Network

 Execute what you can, write in the PRF with the ports
provisioned for VP.

- 43

Validation/
Late Execution

Validation

Introducing Late Execution

11/8/2017 Arthur Perais & André Seznec - ISCA 2014

Out-of-order
engine

VPredict

Retire

Prediction FIFO Queue

CMP

Execute single-cycle predicted
instructions just before retirement, in-
order.

Do not dispatch to the IQ either.

- 44

Late Execution Hardware

11/8/2017 Arthur Perais & André Seznec - ISCA 2014

Prediction FIFO Queue

CMP

CMP

PRF

Late Exec Control

I1C
orrect

I2C
orrect

To VPred

 Execute just before validation and retirement by leveraging the
ports provisioned for validation.

Late Execution Validation

- 45

{Early | OoO | Late} Execution: EOLE

11/8/2017 Arthur Perais & André Seznec - ISCA 2014

 Much less instructions enter the IQ: We may be able to reduce the
issue-width:
• Simpler IQ.
• Less ports on the PRF.
• Less bypass.
 Simpler OoO.

 Non critical predictions become useful as the instructions can be
late-executed.

 What about hardware cost?

- 46

Outline
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

Instruction Flow

Motivation – Loop Evolution

AMD 29KAMD Jaguar / Qualcomm KraitIntel Core 2 / ARM Cortex-A9Intel Nehalem / ARM Cortex-A15Intel SandybridgeIn-Place Execution

Mikko Lipasti-University of Wisconsin 49

Motivation – Loop Opportunity

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

4 8 16 32 64 128 256 512 1024 2048

To
ta

l D
yn

am
ic

 In
st

ru
ct

io
ns

 C
ap

tu
re

d
(%

)

Loop Buffer Capacity (instructions)

SD-VBS MiBench SpecInt SpecFP

Mikko Lipasti-University of Wisconsin 50

In-Place Loop Execution
• Execute loops in-place

– Eliminate fetch/branch/dispatch
overheads

– Reuse back-end structures
• Necessary Modifications

– Loop Detection / Dispatch Logic
– Dependence Linking
– Reusable backend structures

• IQ Entries, LSQ Entries, Physical
Registers

Front-End
Iteration N+1
Iteration N

Iteration N+2

Iteration N+3

Iteration N+4
Iteration N+5

Iteration N+6
Iteration N+7

Mikko Lipasti-University of Wisconsin 51

Frontend Loop Logic
• Primary Responsibilities

– Identify loops and resource
requirements

– Dispatch loops
– Incorporate feedback

• Loop Identification
– Triggered by backwards branch
– Unlimited control flow
– Utilizes simple state machine and

registers

• Details in [Hayenga, HPCA 2014]

Mikko Lipasti-University of Wisconsin 52

Loop Types

Simple Complex Early Exit

Mikko Lipasti-University of Wisconsin 53

Queue Management

Loop Start

Loop End

Commit

Loop End
Loop Start

Loop End
Loop StartCommit

Commit

ROB

Mikko Lipasti-University of Wisconsin 54

LSQ – Conventional Ordering

Mikko Lipasti-University of Wisconsin 55

LSQ – Loop Ordering

Mikko Lipasti-University of Wisconsin 56

In-place Loop Cache Benefit

• On average 20% fewer instructions fetched
• Still significant opportunity remaining

Mikko Lipasti-University of Wisconsin 57

ARM Cortex A15 [Source: NVIDIA]

Outline
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

Transparent Control Independence
[Al-Zawawi et al., ISCA 07]

• Control flow graph convergence
– Execution reconverges after branches
– If-then-else constructs, etc.

• Can we fetch/execute instructions beyond convergence point?
– Significant potential for ILP shown by limit study [Lam/Wilson, ISCA 92]

• How do we resolve ambiguous register and memory
dependences?

• Slides from Al-Zawawi ISCA presentation follow

© 2007 Ahmed S. Al-Zawawi ISCA 34 60

Control independence basics

control-independent
(CI)

branch

R5

R5

R5

reconv.

control-independent
data-dependent

(CIDD)

control-dependent
(CD)

control-independent
data-independent

(CIDI)

© 2007 Ahmed S. Al-Zawawi ISCA 34 61

Four steps for exploiting CI

© 2007 Ahmed S. Al-Zawawi ISCA 34 62

Four steps for exploiting CI

1. Identify reconv. point

© 2007 Ahmed S. Al-Zawawi ISCA 34 63

Four steps for exploiting CI

1. Identify reconv. point

2. Remove/Insert CD inst.

© 2007 Ahmed S. Al-Zawawi ISCA 34 64

Four steps for exploiting CI

1. Identify reconv. point

2. Remove/Insert CD inst.

3. Identify CIDD inst.

© 2007 Ahmed S. Al-Zawawi ISCA 34 65

Four steps for exploiting CI

1. Identify reconv. point

2. Remove/Insert CD inst.

3. Identify CIDD inst.

4. Repair CIDD inst.
a) Fix data dependencies
b) Re-execute CIDD inst.

CIDI-supplied
source value

TCI misprediction recovery

© 2007 Ahmed S. Al-Zawawi ISCA 34 66

Instruction Window
Br

Leverage checkpointed source values to
mimic the effect of program order

Exploit coarse-grain checkpoint-based
retirement to relax ordering constraints

Misprediction

R

Recovery
program C

heckpoint 2

branch
checkpoint

Duplicate
CIDD inst.Correct CD inst.

In-order retirement is not possible when
instructions are out of program order

Leverage branch checkpoint for correct CD instructions

CIDD
instructions

Checkpoint-based retirement enables
aggressive register reclamation (e.g., CPR):
Completed instructions free their resources

C
heckpoint 1

Checkpoint CIDI-supplied
source values

Transparent Control Independence

© 2007 Ahmed S. Al-Zawawi ISCA 34 67

TCI repairs program state, not program order

TCI pipeline is recovery-free
• Transparent recovery by fetching additional
instructions with checkpointed source values

TCI pipeline is free-flowing
• Leverage conventional speculation to execute
correct and incorrect instructions quickly and
efficiently
• Completed instructions free their resources

© 2007 Ahmed S.
Al-Zawawi ISCA 34 68

TCI microarchitecture

• Add repair rename map
• Add selective re-execution buffer (RXB)

correct
CD

3

CI2
1 predicted CD

I$ Spec.
Map

Check
points

Repair
MapRXB

IQ RF FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

4 re-execute CIDD

Predict the branch

© 2007 Ahmed S. Al-Zawawi ISCA 34 69

Instructions execute and leave
the pipeline when done

branch

R5

R5

R5

reconv.

CD

CI
CIDD

predict actual

correct
CD

3

CI2
I$ Spec.

Map

Check
points

Repair
MapRXB

IQ RF

1 predicted CD

FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

4 re-execute CIDD

Construct recovery program

© 2007 Ahmed S. Al-Zawawi ISCA 34 70

Copy duplicate of CIDD inst.
with their source values

into RXB

branch

R5

R5

R5

reconv.

CD

CI
CIDD

predict actualre-execute CIDD4

3
correct

CD

predicted CD1

I$ Spec.
Map

Check
points

Repair
MapRXB

IQ RF FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

2 CI

Insert correct CD instructions

© 2007 Ahmed S. Al-Zawawi ISCA 34 71

Load branch checkpoint into
repair rename map, then

fetch correct CD inst.

branch

R5

R5

R5

reconv.

CD

CI
CIDD

predict actualre-execute CIDD4

CI2
predicted CD1

I$ Spec.
Map

Check
points

Repair
MapRXB

IQ RF FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

3
correct

CD

Repair & re-execute CIDD instructions

© 2007 Ahmed S. Al-Zawawi ISCA 34 72

Inject duplicate CIDD inst.
with their checkpointed

source values

branch

R5

R5

R5

reconv.

CD

CI
CIDD

predict actual

correct
CD

3

CI2
predicted CD1

I$ Spec.
Map

Check
points

Repair
MapRXB

IQ RF FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions

4 re-execute CIDD

Merge repair & spec. rename maps

© 2007 Ahmed S. Al-Zawawi ISCA 34 73

Copy corrected register mappings
from repair map to spec. map

branch

R5

R5

R5

reconv.

CD

CI
CIDD

predict actualre-execute CIDD4

CI2
predicted CD1

I$ Spec.
Map

Check
points

Repair
MapRXB

IQ RF FU

to RXB
(CIDD instructions)

to RXB
(CIDD source values)

drain
instructions5

Merge
map

Transparent Control Independence
• TCI employs CFP-like slice buffer to reconstruct state

– Instructions with ambiguous dependences buffered
– Reinsert them the same way forward load miss slice is

reinserted

• “Best” CI proposal to date, but still very complex and
expensive, with moderate payback

• Main reason to pursue CI: mispredicted branches
– This is a moving target
– Branch misprediction rates have dropped significantly even

since 2007

Summary
• Memory Data Flow

– Scalable Load/Store Queues
– Memory-level parallelism (MLP)

• Register Data Flow
– Instruction scheduling overview

• Scheduling atomicity
• Speculative scheduling
• Scheduling recovery

– EOLE: Effective Implementation of Value Prediction

• Instruction Flow
– Revolver: efficient loop execution
– Transparent Control Independence

	Advanced Microarchicture�ECE/CS 752 Fall 2017
	Readings
	Outline
	Memory Dataflow
	Scalable Load/Store Queues
	Store Queue/Load Queue Scaling
	Store Vulnerability Window (SVW)
	NoSQ
	Store/Load Optimizations
	Outline
	Memory-Level Parallelism
	Runahead Execution
	Waiting Instruction Buffer
	Continual Flow Pipelines
	Long Term Parking
	Outline
	Register Dataflow
	Instruction scheduling
	Instruction scheduling
	Scheduling loop
	Wakeup and Select
	Scheduling Atomicity
	Implication of scheduling atomicity
	Scheduling atomicity �& non-data-capture scheduler
	Speculative Scheduling
	Speculative Scheduling
	Scheduling replay
	Wavefront propagation
	Load resolution feedback delay in instruction scheduling
	Issues in scheduling replay
	Requirements of scheduling replay
	Scheduling replay schemes
	Position-based selective replay
	Outline
	Definition
	Some History
	Why?
	What Happened?
	Performance?
	Future Adoption?
	Some Recent Interest
	Introducing Early Execution
	Early Execution Hardware
	Introducing Late Execution
	Late Execution Hardware
	{Early | OoO | Late} Execution: EOLE
	Outline
	Instruction Flow
	Motivation – Loop Evolution
	Motivation – Loop Opportunity
	In-Place Loop Execution
	Frontend Loop Logic
	Loop Types
	Queue Management
	LSQ – Conventional Ordering
	LSQ – Loop Ordering
	In-place Loop Cache Benefit
	Outline
	Transparent Control Independence
	Control independence basics
	Four steps for exploiting CI
	Four steps for exploiting CI
	Four steps for exploiting CI
	Four steps for exploiting CI
	Four steps for exploiting CI
	TCI misprediction recovery
	Transparent Control Independence
	TCI microarchitecture
	Predict the branch
	Construct recovery program
	Insert correct CD instructions
	Repair & re-execute CIDD instructions
	Merge repair & spec. rename maps
	Transparent Control Independence
	Summary

