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Readings
• Read on your own:

– Review: Shen & Lipasti Chapter 3
– W.-H. Wang, J.-L. Baer, and H. M. Levy. “Organization of a two-level virtual-real cache 

hierarchy,” Proc. 16th ISCA, pp. 140-148, June 1989 (B6)  Online PDF
– Read Sec. 1, skim Sec. 2, read Sec. 3: Bruce Jacob, “The Memory System: You Can't Avoid 

It, You Can't Ignore It, You Can't Fake It,” Synthesis Lectures on Computer Architecture 
2009 4:1, 1-77.  Online PDF

• To be discussed in class:
– Review #1 due 11/1/2017: Andreas Sembrant, Erik Hagersten, David Black-Schaffer, “The 

Direct-to-Data (D2D) cache: navigating the cache hierarchy with a single lookup,” Proc. 
ISCA 2014, June 2014.. Online PDF

– Review #2 due 11/3/2017: Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman 
P. Jouppi. 2013. Kiln: closing the performance gap between systems with and without 
persistence support. In Proceedings of the 46th Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 421-432. Online 
PDF

– Review #3 due 11/6/2017: T. Shaw, M. Martin, A. Roth, “NoSQ: Store-Load 
Communication without a Store Queue,” in Proceedings of the 39th Annual IEEE/ACM 
International Symposium on Microarchitecture, 2006. Online PDF
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Outline: Main Memory
• DRAM chips

• Memory organization

– Interleaving

– Banking

• Memory controller design

• Hybrid Memory Cube

• Phase Change Memory (reading)

• Virtual memory

• TLBs

• Interaction of caches and virtual memory (Wang et al.)

• Large pages, virtualization



DRAM Chip Organization

• Optimized for density, not speed
• Data stored as charge in capacitor
• Discharge on reads => destructive reads
• Charge leaks over time

– refresh every 64ms
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DRAM Chip Organization

• Current generation DRAM

– 8Gbit @25nm 

– Up to 1600 MHz synchronous interface

– Data clock 2x (3200MHz), double-data 
rate so 3200 MT/s peak 5
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DRAM Chip Organization

• New RAS results in:
– Bitline precharge

– Row decode, sense

– Row buffer write (up to 8K)
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 New CAS

– Read from row buffer

– Much faster (3-4x)

 Streaming row accesses desirable
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Simple Main Memory

• Consider these parameters:
– 10 cycles to send address

– 60 cycles to access each word

– 10 cycle to send word back

• Miss penalty for a 4-word block
– (10 + 60 + 10) x 4 = 320

• How can we speed this up?
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Wider(Parallel) Main Memory

• Make memory wider
– Read out all words in parallel

• Memory parameters
– 10 cycle to send address

– 60 to access a double word

– 10 cycle to send it back

• Miss penalty for 4-word block: 2x(10+60+10) = 160

• Costs
– Wider bus

– Larger minimum expansion unit (e.g. paired DIMMs)
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Interleaved Main Memory

• Each bank has
– Private address lines

– Private data lines

– Private control lines (read/write)
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Interleaved and Parallel Organization
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Interleaved Memory Examples
Ai = address to bank i
Ti = data transfer

– Unit Stride:
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A0 T0bank 0  access

A1 T1bank 1 access

A2 T2bank 2 access

A3 T3bank 3 access

• Stride 3: A0 T0bank 0  access

A3 T1bank 3 access

A2 T2bank 2 access

A1 T3bank 1 access



Interleaved Memory Summary

• Parallel memory adequate for sequential accesses
– Load cache block: multiple sequential words
– Good for writeback caches

• Banking useful otherwise
– If many banks, choose a prime number

• Can also do both
– Within each bank: parallel memory path
– Across banks

• Can support multiple concurrent cache accesses (nonblocking)
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 Raise level of abstraction: commands
• Activate row

Read row into row buffer
• Column access

Read data from addressed row
• Bank Precharge

Get ready for new row access



DDR SDRAM Timing
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Constructing a Memory System
• Combine chips in parallel to increase access width

– E.g.  8  8-bit wide DRAMs for a 64-bit parallel access
– DIMM – Dual Inline Memory Module

• Combine DIMMs to form multiple ranks
• Attach a number of DIMMs to a memory channel

– Memory Controller manages a channel (or two lock-step channels)
• Interleave patterns:

– Rank, Row, Bank, Column, [byte]
– Row, Rank, Bank, Column, [byte]

•Better dispersion of addresses
•Works better with power-of-two ranks

15



Memory Controller and Channel
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Memory Controllers

• Contains buffering

– In both directions
• Schedulers manage 

resources

– Channel and banks
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Resource Scheduling
• An interesting optimization problem
• Example:

– Precharge: 3 cycles
– Row activate: 3 cycles
– Column access: 1 cycle
– FR-FCFS: 20 cycles
– StrictFIFO: 56 cycles
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DDR  SDRAM Policies
• Goal: try to maximize requests to an open row (page)
• Close row policy

– Always close row, hides precharge penalty
– Lost opportunity if next access to same row

• Open row policy
– Leave row open
– If an access to a different row, then penalty for precharge

• Also performance issues related to rank interleaving
– Better dispersion of addresses



Memory Scheduling Contest
• http://www.cs.utah.edu/~rajeev/jwac12/
• Clean, simple, infrastructure
• Traces provided
• Very easy to make fair comparisons
• Comes with 6 schedulers
• Also targets power-down modes (not just page 

open/close scheduling)
• Three tracks:

1. Delay (or Performance), 
2. Energy-Delay Product (EDP)
3. Performance-Fairness Product (PFP)

http://www.cs.utah.edu/%7Erajeev/jwac12/


Future: Hybrid Memory Cube

• Micron proposal [Pawlowski, Hot Chips 11]

– www.hybridmemorycube.org 21



Hybrid Memory Cube MCM

• Micron proposal [Pawlowski, Hot Chips 11]

– www.hybridmemorycube.org
22



Network of DRAM

• Traditional DRAM: star topology
• HMC: mesh, etc. are feasible
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Hybrid Memory Cube

• High-speed logic segregated in chip stack
• 3D TSV for bandwidth 24



High Bandwidth Memory (HBM)

• High-speed serial links vs. 2.5D silicon interposer
• Commercialized, HBM2/HBM3 on the way

25

[Shmuel Csaba Otto Traian]



Future: Resistive memory
• PCM: store bit in phase state of material
• Alternatives:

– Memristor (HP Labs)
– STT-MRAM

• Nonvolatile
• Dense: crosspoint architecture (no access device)
• Relatively fast for read
• Very slow for write (also high power)
• Write endurance often limited

– Write leveling (also done for flash)
– Avoid redundant writes (read, cmp, write)
– Fix individual bit errors (write, read, cmp, fix)
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Main Memory and Virtual Memory
• Use of virtual memory

– Main memory becomes another level in the memory 
hierarchy

– Enables programs with address space or working set 
that exceed physically available memory

• No need for programmer to manage overlays, etc.
• Sparse use of large address space is OK

– Allows multiple users or programs to timeshare limited 
amount of physical memory space and address space

• Bottom line: efficient use of expensive resource, 
and ease of programming



Virtual Memory
• Enables

– Use more memory than system has
– Think program is only one running

• Don’t have to manage address space usage across programs
• E.g. think it always starts at address 0x0

– Memory protection
• Each program has private VA space: no-one else can clobber it

– Better performance
• Start running a large program before all of it has been loaded 

from disk



Virtual Memory – Placement

• Main memory managed in larger blocks
– Page size typically 4K – 16K

• Fully flexible placement; fully associative
– Operating system manages placement
– Indirection through page table
– Maintain mapping between:

• Virtual address (seen by programmer)
• Physical address (seen by main memory)



Virtual Memory – Placement

• Fully associative implies expensive lookup?
– In caches, yes: check multiple tags in parallel

• In virtual memory, expensive lookup is 
avoided by using a level of indirection
– Lookup table or hash table
– Called a page table



Virtual Memory – Identification

• Similar to cache tag array
– Page table entry contains VA, PA, dirty bit

• Virtual address:
– Matches programmer view; based on register values
– Can be the same for multiple programs sharing same 

system, without conflicts
• Physical address:

– Invisible to programmer, managed by O/S
– Created/deleted on demand basis, can change

Virtual Address Physical Address Dirty bit
0x20004000 0x2000 Y/N



Virtual Memory – Replacement

• Similar to caches:
– FIFO
– LRU; overhead too high

• Approximated with reference bit checks
• “Clock algorithm” intermittently clears all bits

– Random

• O/S decides, manages
– CS537



Virtual Memory – Write Policy

• Write back
– Disks are too slow to write through

• Page table maintains dirty bit
– Hardware must set dirty bit on first write
– O/S checks dirty bit on eviction
– Dirty pages written to backing store

• Disk write, 10+ ms



Virtual Memory 
Implementation

• Caches have fixed policies, hardware FSM for 
control, pipeline stall

• VM has very different miss penalties
– Remember disks are 10+ ms!

• Hence engineered differently



Page Faults
• A virtual memory miss is a page fault

– Physical memory location does not exist
– Exception is raised, save PC
– Invoke OS page fault handler

• Find a physical page (possibly evict)
• Initiate fetch from disk

– Switch to other task that is ready to run
– Interrupt when disk access complete
– Restart original instruction

• Why use O/S and not hardware FSM?



Address Translation

• O/S and hardware communicate via PTE
• How do we find a PTE?

– &PTE = PTBR + page number * sizeof(PTE)
– PTBR is private for each program

• Context switch replaces PTBR contents

VA PA Dirty Ref Protection
0x20004000 0x2000 Y/N Y/N Read/Write/

Execute



Address Translation

PAVADPTBR

Virtual Page Number Offset

+



Page Table Size

• How big is page table?
– 232 / 4K * 4B = 4M per program 
– Much worse for 64-bit machines

• To make it smaller
– Use limit register(s)

• If VA exceeds limit, invoke O/S to grow region

– Use a multi-level page table
– Make the page table pageable (use VM)



Multilevel Page Table

PTBR +

Offset

+

+



Hashed Page Table

• Use a hash table or inverted page table
– PT contains an entry for each real address

• Instead of entry for every virtual address

– Entry is found by hashing VA
– Oversize PT to reduce collisions: #PTE = 4 x (#phys. 

pages)



Hashed Page Table

PTBR

Virtual Page Number Offset

Hash PTE2PTE1PTE0 PTE3



High-Performance VM

• VA translation
– Additional memory reference to PTE
– Each instruction fetch/load/store now 2 memory 

references
• Or more, with multilevel table or hash collisions

– Even if PTE are cached, still slow
• Hence, use special-purpose cache for PTEs

– Called TLB (translation lookaside buffer)
– Caches PTE entries
– Exploits temporal and spatial locality (just a cache)



Translation Lookaside Buffer

• Set associative (a) or fully associative (b)
• Both widely employed

IndexTag



Interaction of TLB and Cache

• Serial lookup: first TLB then D-cache
• Excessive cycle time



Virtually Indexed Physically Tagged L1

• Parallel lookup of TLB and cache
• Faster cycle time
• Index bits must be untranslated

– Restricts size of n-associative cache to n x (virtual page size)
– E.g. 4-way SA cache with 4KB pages max. size is 16KB



Virtual Memory Protection

• Each process/program has private virtual address 
space
– Automatically protected from rogue programs

• Sharing is possible, necessary, desirable
– Avoid copying, staleness issues, etc.

• Sharing in a controlled manner
– Grant specific permissions

• Read
• Write
• Execute
• Any combination



Protection

• Process model
– Privileged kernel
– Independent user processes

• Privileges vs. policy
– Architecture provided primitives
– OS implements policy
– Problems arise when h/w implements policy

• Separate policy from mechanism!



Protection Primitives

• User vs kernel
– at least one privileged mode
– usually implemented as mode bits

• How do we switch to kernel mode?
– Protected “gates” or system calls
– Change mode and continue at pre-determined address

• Hardware to compare mode bits to access rights
– Only access certain resources in kernel mode
– E.g. modify page mappings



Protection Primitives

• Base and bounds
– Privileged registers

base <= address <= bounds
• Segmentation

– Multiple base and bound registers
– Protection bits for each segment

• Page-level protection (most widely used)
– Protection bits in page entry table
– Cache them in TLB for speed



VM Sharing

• Share memory locations by:
– Map shared physical location into both address 

spaces:
• E.g. PA 0xC00DA becomes:

– VA 0x2D000DA for process 0
– VA 0x4D000DA for process 1

– Either process can read/write shared location

• However, causes synonym problem



VM Homonyms

• Process-private address space
– Same VA can map to multiple PAs:

• E.g. VA 0xC00DA becomes:
– PA 0x2D000DA for process 0
– PA 0x4D000DA for process 1

– Either process can install line into the cache

• However, causes homonym problem



Virtually-Addressed Caches
• Virtually-addressed caches are desirable

– No need to translate VA to PA before cache lookup
– Faster hit time, translate only on misses

• However, VA homonyms & synonyms cause problems
– Can end up with homonym blocks in the cache
– Can end up with two copies of same physical line
– Causes coherence problems [Wang et al. reading]

• Solutions to homonyms:
– Flush caches/TLBs on context switch
– Extend cache tags to include PID or ASID

• Effectively a shared VA space (PID becomes part of address)
– Enforce global shared VA space (PowerPC)

• Requires another level of addressing (EA->VA->PA)

• Solutions to synonyms:
– Prevent multiple copies through reverse address translation
– Or, keep pointers in PA L2 cache [Wang et al.]



Additional issues
• Large page support

– Most ISAs support 4K/1M/1G 
– Page table & TLB designs must support

• Renewed interest in segments as an alternative
– Recent work from Multifacet [Basu thesis, 2013][Gandhi thesis, 2016]

– Can be complementary to paging

• Multiple levels of translation in virtualized systems
– Virtual machines run unmodified OS
– Each OS manages translations, page tables
– Hypervisor manages translations across VMs
– Hardware still has to provide efficient translation



Summary: Main Memory
• DRAM chips

• Memory organization

– Interleaving

– Banking

• Memory controller design

• Hybrid Memory Cube

• Phase Change Memory (reading)

• Virtual memory

• TLBs

• Interaction of caches and virtual memory (Wang et al.)

• Large pages, virtualization
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