
Main Memory
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by Jim Smith and Mark Hill
Updated by Mikko Lipasti

Readings
• Read on your own:

– Review: Shen & Lipasti Chapter 3
– W.-H. Wang, J.-L. Baer, and H. M. Levy. “Organization of a two-level virtual-real cache

hierarchy,” Proc. 16th ISCA, pp. 140-148, June 1989 (B6) Online PDF
– Read Sec. 1, skim Sec. 2, read Sec. 3: Bruce Jacob, “The Memory System: You Can't Avoid

It, You Can't Ignore It, You Can't Fake It,” Synthesis Lectures on Computer Architecture
2009 4:1, 1-77. Online PDF

• To be discussed in class:
– Review #1 due 11/1/2017: Andreas Sembrant, Erik Hagersten, David Black-Schaffer, “The

Direct-to-Data (D2D) cache: navigating the cache hierarchy with a single lookup,” Proc.
ISCA 2014, June 2014.. Online PDF

– Review #2 due 11/3/2017: Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman
P. Jouppi. 2013. Kiln: closing the performance gap between systems with and without
persistence support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 421-432. Online
PDF

– Review #3 due 11/6/2017: T. Shaw, M. Martin, A. Roth, “NoSQ: Store-Load
Communication without a Store Queue,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006. Online PDF

2

Outline: Main Memory
• DRAM chips

• Memory organization

– Interleaving

– Banking

• Memory controller design

• Hybrid Memory Cube

• Phase Change Memory (reading)

• Virtual memory

• TLBs

• Interaction of caches and virtual memory (Wang et al.)

• Large pages, virtualization

DRAM Chip Organization

• Optimized for density, not speed
• Data stored as charge in capacitor
• Discharge on reads => destructive reads
• Charge leaks over time

– refresh every 64ms
4

Sense Amps

Row Buffer

Column Decoder

Ro
w

 D
ec

od
er

Word
Lines

Bitl ines

Memory
CellRow

Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

 Cycle time roughly twice
access time

 Need to precharge bitlines
before access

DRAM Chip Organization

• Current generation DRAM

– 8Gbit @25nm

– Up to 1600 MHz synchronous interface

– Data clock 2x (3200MHz), double-data
rate so 3200 MT/s peak 5

Sense Amps

Row Buffer

Column Decoder

Ro
w

 D
ec

od
er

Word
Lines

Bitl ines

Memory
CellRow

Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

 Address pins are time-multiplexed
– Row address strobe (RAS)

– Column address strobe (CAS)

DRAM Chip Organization

• New RAS results in:
– Bitline precharge

– Row decode, sense

– Row buffer write (up to 8K)

6

 New CAS

– Read from row buffer

– Much faster (3-4x)

 Streaming row accesses desirable

Sense Amps

Row Buffer

Column Decoder

Ro
w

 D
ec

od
er

Word
Lines

Bitl ines

Memory
CellRow

Address

Column
Address

Bitline

Wordline

Capacitor

Transistor

Data bus

Array

Simple Main Memory

• Consider these parameters:
– 10 cycles to send address

– 60 cycles to access each word

– 10 cycle to send word back

• Miss penalty for a 4-word block
– (10 + 60 + 10) x 4 = 320

• How can we speed this up?

7

Wider(Parallel) Main Memory

• Make memory wider
– Read out all words in parallel

• Memory parameters
– 10 cycle to send address

– 60 to access a double word

– 10 cycle to send it back

• Miss penalty for 4-word block: 2x(10+60+10) = 160

• Costs
– Wider bus

– Larger minimum expansion unit (e.g. paired DIMMs)

8

Interleaved Main Memory

• Each bank has
– Private address lines

– Private data lines

– Private control lines (read/write)

9

Byte in Word

Word in Doubleword

Bank

Doubleword in bank

Bank 0

Bank2

Bank 1

Bank 3

 Break memory into M banks
– Word A is in A mod M at A div M

 Banks can operate concurrently and
independently

Interleaved and Parallel Organization

10

DRAM

Add
r
Cmd

D at aC S

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Addr
Cmd

Da ta

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

Add
r
Cm

d
D at aC S

Add r
C md

Da ta
CS Add

r
Cm

d
D at a Addr

Cm
d
Da ta

Serial Parallel

Non-interleaved

Interleaved

Interleaved Memory Examples
Ai = address to bank i
Ti = data transfer

– Unit Stride:

11

A0 T0bank 0 access

A1 T1bank 1 access

A2 T2bank 2 access

A3 T3bank 3 access

• Stride 3: A0 T0bank 0 access

A3 T1bank 3 access

A2 T2bank 2 access

A1 T3bank 1 access

Interleaved Memory Summary

• Parallel memory adequate for sequential accesses
– Load cache block: multiple sequential words
– Good for writeback caches

• Banking useful otherwise
– If many banks, choose a prime number

• Can also do both
– Within each bank: parallel memory path
– Across banks

• Can support multiple concurrent cache accesses (nonblocking)

DDR SDRAM Control

Idle Active

Bank Precharge

Row Activation

Column
Access

Bank N-1

Bank 1

Memory Array
Bank 0

R
ow

 D
ec

od
er

Sense Amplifiers
Row Buffer

Column Decoder

Address

Data

Memory Array
Bank 0

13

 Raise level of abstraction: commands
• Activate row

Read row into row buffer
• Column access

Read data from addressed row
• Bank Precharge

Get ready for new row access

DDR SDRAM Timing

Data

Command

Clock

CMD

 Read access

Constructing a Memory System
• Combine chips in parallel to increase access width

– E.g. 8 8-bit wide DRAMs for a 64-bit parallel access
– DIMM – Dual Inline Memory Module

• Combine DIMMs to form multiple ranks
• Attach a number of DIMMs to a memory channel

– Memory Controller manages a channel (or two lock-step channels)
• Interleave patterns:

– Rank, Row, Bank, Column, [byte]
– Row, Rank, Bank, Column, [byte]

•Better dispersion of addresses
•Works better with power-of-two ranks

15

Memory Controller and Channel
DIMM 0

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

B0 B1

B2 B3

DIMM 1 DIMM 2

DDR
SDRAM

Controller

1 Channel

chip (DIMM) select
data
address and command

16

Memory Controllers

• Contains buffering

– In both directions
• Schedulers manage

resources

– Channel and banks

Arrival Time Assignment

Cache Commands
and Addresses

Bank 0
Requests

Bank n-1
Requests. . .

Bank 0
Scheduler

Bank 0
Scheduler

Channel
Scheduler

Cache Line
Write Buffer

Cache Line
Read Buffer

Control Path Command/Response
Path

SDRAM Data Bus

Cache Data Bus Cache Data Bus

SDRAM Data BusSDRAM Command/
Address Bus

Data Path

Transaction Buffer

17

Resource Scheduling
• An interesting optimization problem
• Example:

– Precharge: 3 cycles
– Row activate: 3 cycles
– Column access: 1 cycle
– FR-FCFS: 20 cycles
– StrictFIFO: 56 cycles

(0,0,0)
(0,1,0)
(0,0,1)
(0,1,3)
(1,0,0)
(1,1,1)
(1,0,0)
(1,1,2)R

eq
ue

st
 S

eq
ue

nc
e

(B
an

k,
 R

ow
, C

ol
um

n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
P A

P A

P
C

C
A C

C
C

P A C
C

C

P: bank Precharge
A: row Activation
C: Column Access

Idle Active

Bank Precharge

Row Activation

Column
Access

DDR SDRAM Policies
• Goal: try to maximize requests to an open row (page)
• Close row policy

– Always close row, hides precharge penalty
– Lost opportunity if next access to same row

• Open row policy
– Leave row open
– If an access to a different row, then penalty for precharge

• Also performance issues related to rank interleaving
– Better dispersion of addresses

Memory Scheduling Contest
• http://www.cs.utah.edu/~rajeev/jwac12/
• Clean, simple, infrastructure
• Traces provided
• Very easy to make fair comparisons
• Comes with 6 schedulers
• Also targets power-down modes (not just page

open/close scheduling)
• Three tracks:

1. Delay (or Performance),
2. Energy-Delay Product (EDP)
3. Performance-Fairness Product (PFP)

http://www.cs.utah.edu/%7Erajeev/jwac12/

Future: Hybrid Memory Cube

• Micron proposal [Pawlowski, Hot Chips 11]

– www.hybridmemorycube.org 21

Hybrid Memory Cube MCM

• Micron proposal [Pawlowski, Hot Chips 11]

– www.hybridmemorycube.org
22

Network of DRAM

• Traditional DRAM: star topology
• HMC: mesh, etc. are feasible

23

Hybrid Memory Cube

• High-speed logic segregated in chip stack
• 3D TSV for bandwidth 24

High Bandwidth Memory (HBM)

• High-speed serial links vs. 2.5D silicon interposer
• Commercialized, HBM2/HBM3 on the way

25

[Shmuel Csaba Otto Traian]

Future: Resistive memory
• PCM: store bit in phase state of material
• Alternatives:

– Memristor (HP Labs)
– STT-MRAM

• Nonvolatile
• Dense: crosspoint architecture (no access device)
• Relatively fast for read
• Very slow for write (also high power)
• Write endurance often limited

– Write leveling (also done for flash)
– Avoid redundant writes (read, cmp, write)
– Fix individual bit errors (write, read, cmp, fix)

26

Main Memory and Virtual Memory
• Use of virtual memory

– Main memory becomes another level in the memory
hierarchy

– Enables programs with address space or working set
that exceed physically available memory

• No need for programmer to manage overlays, etc.
• Sparse use of large address space is OK

– Allows multiple users or programs to timeshare limited
amount of physical memory space and address space

• Bottom line: efficient use of expensive resource,
and ease of programming

Virtual Memory
• Enables

– Use more memory than system has
– Think program is only one running

• Don’t have to manage address space usage across programs
• E.g. think it always starts at address 0x0

– Memory protection
• Each program has private VA space: no-one else can clobber it

– Better performance
• Start running a large program before all of it has been loaded

from disk

Virtual Memory – Placement

• Main memory managed in larger blocks
– Page size typically 4K – 16K

• Fully flexible placement; fully associative
– Operating system manages placement
– Indirection through page table
– Maintain mapping between:

• Virtual address (seen by programmer)
• Physical address (seen by main memory)

Virtual Memory – Placement

• Fully associative implies expensive lookup?
– In caches, yes: check multiple tags in parallel

• In virtual memory, expensive lookup is
avoided by using a level of indirection
– Lookup table or hash table
– Called a page table

Virtual Memory – Identification

• Similar to cache tag array
– Page table entry contains VA, PA, dirty bit

• Virtual address:
– Matches programmer view; based on register values
– Can be the same for multiple programs sharing same

system, without conflicts
• Physical address:

– Invisible to programmer, managed by O/S
– Created/deleted on demand basis, can change

Virtual Address Physical Address Dirty bit
0x20004000 0x2000 Y/N

Virtual Memory – Replacement

• Similar to caches:
– FIFO
– LRU; overhead too high

• Approximated with reference bit checks
• “Clock algorithm” intermittently clears all bits

– Random

• O/S decides, manages
– CS537

Virtual Memory – Write Policy

• Write back
– Disks are too slow to write through

• Page table maintains dirty bit
– Hardware must set dirty bit on first write
– O/S checks dirty bit on eviction
– Dirty pages written to backing store

• Disk write, 10+ ms

Virtual Memory
Implementation

• Caches have fixed policies, hardware FSM for
control, pipeline stall

• VM has very different miss penalties
– Remember disks are 10+ ms!

• Hence engineered differently

Page Faults
• A virtual memory miss is a page fault

– Physical memory location does not exist
– Exception is raised, save PC
– Invoke OS page fault handler

• Find a physical page (possibly evict)
• Initiate fetch from disk

– Switch to other task that is ready to run
– Interrupt when disk access complete
– Restart original instruction

• Why use O/S and not hardware FSM?

Address Translation

• O/S and hardware communicate via PTE
• How do we find a PTE?

– &PTE = PTBR + page number * sizeof(PTE)
– PTBR is private for each program

• Context switch replaces PTBR contents

VA PA Dirty Ref Protection
0x20004000 0x2000 Y/N Y/N Read/Write/

Execute

Address Translation

PAVADPTBR

Virtual Page Number Offset

+

Page Table Size

• How big is page table?
– 232 / 4K * 4B = 4M per program
– Much worse for 64-bit machines

• To make it smaller
– Use limit register(s)

• If VA exceeds limit, invoke O/S to grow region

– Use a multi-level page table
– Make the page table pageable (use VM)

Multilevel Page Table

PTBR +

Offset

+

+

Hashed Page Table

• Use a hash table or inverted page table
– PT contains an entry for each real address

• Instead of entry for every virtual address

– Entry is found by hashing VA
– Oversize PT to reduce collisions: #PTE = 4 x (#phys.

pages)

Hashed Page Table

PTBR

Virtual Page Number Offset

Hash PTE2PTE1PTE0 PTE3

High-Performance VM

• VA translation
– Additional memory reference to PTE
– Each instruction fetch/load/store now 2 memory

references
• Or more, with multilevel table or hash collisions

– Even if PTE are cached, still slow
• Hence, use special-purpose cache for PTEs

– Called TLB (translation lookaside buffer)
– Caches PTE entries
– Exploits temporal and spatial locality (just a cache)

Translation Lookaside Buffer

• Set associative (a) or fully associative (b)
• Both widely employed

IndexTag

Interaction of TLB and Cache

• Serial lookup: first TLB then D-cache
• Excessive cycle time

Virtually Indexed Physically Tagged L1

• Parallel lookup of TLB and cache
• Faster cycle time
• Index bits must be untranslated

– Restricts size of n-associative cache to n x (virtual page size)
– E.g. 4-way SA cache with 4KB pages max. size is 16KB

Virtual Memory Protection

• Each process/program has private virtual address
space
– Automatically protected from rogue programs

• Sharing is possible, necessary, desirable
– Avoid copying, staleness issues, etc.

• Sharing in a controlled manner
– Grant specific permissions

• Read
• Write
• Execute
• Any combination

Protection

• Process model
– Privileged kernel
– Independent user processes

• Privileges vs. policy
– Architecture provided primitives
– OS implements policy
– Problems arise when h/w implements policy

• Separate policy from mechanism!

Protection Primitives

• User vs kernel
– at least one privileged mode
– usually implemented as mode bits

• How do we switch to kernel mode?
– Protected “gates” or system calls
– Change mode and continue at pre-determined address

• Hardware to compare mode bits to access rights
– Only access certain resources in kernel mode
– E.g. modify page mappings

Protection Primitives

• Base and bounds
– Privileged registers

base <= address <= bounds
• Segmentation

– Multiple base and bound registers
– Protection bits for each segment

• Page-level protection (most widely used)
– Protection bits in page entry table
– Cache them in TLB for speed

VM Sharing

• Share memory locations by:
– Map shared physical location into both address

spaces:
• E.g. PA 0xC00DA becomes:

– VA 0x2D000DA for process 0
– VA 0x4D000DA for process 1

– Either process can read/write shared location

• However, causes synonym problem

VM Homonyms

• Process-private address space
– Same VA can map to multiple PAs:

• E.g. VA 0xC00DA becomes:
– PA 0x2D000DA for process 0
– PA 0x4D000DA for process 1

– Either process can install line into the cache

• However, causes homonym problem

Virtually-Addressed Caches
• Virtually-addressed caches are desirable

– No need to translate VA to PA before cache lookup
– Faster hit time, translate only on misses

• However, VA homonyms & synonyms cause problems
– Can end up with homonym blocks in the cache
– Can end up with two copies of same physical line
– Causes coherence problems [Wang et al. reading]

• Solutions to homonyms:
– Flush caches/TLBs on context switch
– Extend cache tags to include PID or ASID

• Effectively a shared VA space (PID becomes part of address)
– Enforce global shared VA space (PowerPC)

• Requires another level of addressing (EA->VA->PA)

• Solutions to synonyms:
– Prevent multiple copies through reverse address translation
– Or, keep pointers in PA L2 cache [Wang et al.]

Additional issues
• Large page support

– Most ISAs support 4K/1M/1G
– Page table & TLB designs must support

• Renewed interest in segments as an alternative
– Recent work from Multifacet [Basu thesis, 2013][Gandhi thesis, 2016]

– Can be complementary to paging

• Multiple levels of translation in virtualized systems
– Virtual machines run unmodified OS
– Each OS manages translations, page tables
– Hypervisor manages translations across VMs
– Hardware still has to provide efficient translation

Summary: Main Memory
• DRAM chips

• Memory organization

– Interleaving

– Banking

• Memory controller design

• Hybrid Memory Cube

• Phase Change Memory (reading)

• Virtual memory

• TLBs

• Interaction of caches and virtual memory (Wang et al.)

• Large pages, virtualization

	Main Memory�ECE/CS 752 Fall 2017
	Readings
	Outline: Main Memory
	DRAM Chip Organization
	DRAM Chip Organization
	DRAM Chip Organization
	Simple Main Memory
	Wider(Parallel) Main Memory
	Interleaved Main Memory
	Interleaved and Parallel Organization
	Interleaved Memory Examples
	Interleaved Memory Summary
	DDR SDRAM Control
	DDR SDRAM Timing
	Constructing a Memory System
	Memory Controller and Channel
	Memory Controllers
	Resource Scheduling
	DDR SDRAM Policies
	Memory Scheduling Contest
	Future: Hybrid Memory Cube
	Hybrid Memory Cube MCM
	Network of DRAM
	Hybrid Memory Cube
	High Bandwidth Memory (HBM)
	Future: Resistive memory
	Main Memory and Virtual Memory
	Virtual Memory
	Virtual Memory – Placement
	Virtual Memory – Placement
	Virtual Memory – Identification
	Virtual Memory – Replacement
	Virtual Memory – Write Policy
	Virtual Memory Implementation
	Page Faults
	Address Translation
	Address Translation
	Page Table Size
	Multilevel Page Table
	Hashed Page Table
	Hashed Page Table
	High-Performance VM
	Translation Lookaside Buffer
	Interaction of TLB and Cache
	Virtually Indexed Physically Tagged L1
	Virtual Memory Protection
	Protection
	Protection Primitives
	Protection Primitives
	VM Sharing
	VM Homonyms
	Virtually-Addressed Caches
	Additional issues
	Summary: Main Memory

