
Memory Data Flow
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

High-IPC Processor

Mikko Lipasti-University of Wisconsin 2

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching

Mikko Lipasti-University of Wisconsin 3

Memory Data Dependences
• Besides branches, long memory latencies are one of the biggest

performance challenges today.

• To preserve sequential (in-order) state in the data caches and
external memory (so that recovery from exceptions is possible)
stores are performed in order. This takes care of antidependences
and output dependences to memory locations.

• However, loads can be issued out of order with respect to stores if
the out-of-order loads check for data dependences with respect to
previous, pending stores.

WAW WAR RAW
store X load X store X

: : :

store X store X load X

Mikko Lipasti-University of Wisconsin 4

Memory Data Dependences
• “Memory Aliasing” = Two memory references involving the same memory

location (collision of two memory addresses).
• “Memory Disambiguation” = Determining whether two memory references

will alias or not (whether there is a dependence or not).
• Memory Dependency Detection:

– Must compute effective addresses of both memory references
– Effective addresses can depend on run-time data and other instructions
– Comparison of addresses require much wider comparators

Example code:

(1) STORE V

(2) ADD

(3) LOAD W

(4) LOAD X

(5) LOAD V

(6) ADD

(7) STORE W

RAW

WAR

Mikko Lipasti-University of Wisconsin 5

The DAXPY Example
Y(i) = A * X(i) + Y(i)

LD F0, a
ADDI R4, Rx, #512 ; last address

Loop:
LD F2, 0(Rx) ; load X(i)
MULTD F2, F0, F2 ; A*X(i)
LD F4, 0(Ry) ; load Y(i)
ADDD F4, F2, F4 ; A*X(i) + Y(i)
SD F4, 0(Ry) ; store into Y(i)
ADDI Rx, Rx, #8 ; inc. index to X
ADDI Ry, Ry, #8 ; inc. index to Y
SUB R20, R4, Rx ; compute bound
BNZ R20, loop ; check if done

LD

LDMULTD

ADDD

SD

Total Order

Mikko Lipasti-University of Wisconsin 6

Out-of-order Load Issue

Required for high performance
Hardware must monitor prior stores

– No alias: loads free to issue
– Alias: load must honor RAW

Complications
– Large comparators (64-bit addresses)
– Relative order of interleaved stores and loads

• (must forward from most recent prior store)

– Speculative vs. non-speculative load issue
Mikko Lipasti-University of Wisconsin 7

Optimizing Load/Store Disambiguation
Non-speculative load/store disambiguation

1. Loads wait for addresses of all prior stores
2. Full address comparison
3. Bypass if no match, forward if match

Step (1) can unnecessarily limit performance:

load r5,MEM[r3] ← cache miss
store r7, MEM[r5] ← RAW for agen, stalled
…
load r8, MEM[r9] ← independent load stalled

Mikko Lipasti-University of Wisconsin 8

Speculative Disambiguation
• What if aliases are rare?

1. Loads don’t wait for addresses of
all prior stores

2. Full address comparison of stores
that are ready

3. Bypass if no match, forward if
match

4. Check all store addresses when
they commit

– No matching loads – speculation
was correct

– Matching unbypassed load –
incorrect speculation

5. Replay starting from incorrect
load

Load
Queue

Store
Queue

Load/Store RS

Agen

Reorder Buffer

Mem

Mikko Lipasti-University of Wisconsin 9

Speculative Disambiguation: Load Bypass

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1: st R3, MEM[R8]: ??
i2: ld R9, MEM[R4]: ??

i1: st R3, MEM[R8]: x800Ai2: ld R9, MEM[R4]: x400A

• i1 and i2 issue in program order
• i2 checks store queue (no match)

Mikko Lipasti-University of Wisconsin 10

Speculative Disambiguation: Load Forward

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1: st R3, MEM[R8]: ??
i2: ld R9, MEM[R4]: ??

i1: st R3, MEM[R8]: x800Ai2: ld R9, MEM[R4]: x800A

• i1 and i2 issue in program order
• i2 checks store queue (match=>forward)

Mikko Lipasti-University of Wisconsin 11

Speculative Disambiguation: Safe Speculation

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1: st R3, MEM[R8]: ??
i2: ld R9, MEM[R4]: ??

i1: st R3, MEM[R8]: x800Ai2: ld R9, MEM[R4]: x400C

• i1 and i2 issue out of program order
• i1 checks load queue at commit (no match)

Mikko Lipasti-University of Wisconsin 12

Speculative Disambiguation: Violation

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1: st R3, MEM[R8]: ??
i2: ld R9, MEM[R4]: ??

i1: st R3, MEM[R8]: x800Ai2: ld R9, MEM[R4]: x800A

• i1 and i2 issue out of program order
• i1 checks load queue at commit (match)

– i2 marked for replay
Mikko Lipasti-University of Wisconsin 13

Use of Prediction
• If aliases are rare: static prediction

– Predict no alias every time
• Why even implement forwarding? PowerPC 620 doesn’t

– Pay misprediction penalty rarely
• If aliases are more frequent: dynamic prediction

– Use PHT-like history table for loads
• If alias predicted: delay load
• If aliased pair predicted: forward from store to load

– More difficult to predict pair [store sets, Alpha 21264]
– Pay misprediction penalty rarely

• Memory cloaking [Moshovos, Sohi, ISCA 1997]
– Predict load/store pair
– Directly copy store data register to load target register
– Reduce data transfer latency to absolute minimum

Mikko Lipasti-University of Wisconsin 14

Load/Store Disambiguation Discussion
• RISC ISA:

– Many registers, most variables allocated to registers
– Aliases are rare
– Most important to not delay loads (bypass)
– Alias predictor may/may not be necessary

• CISC ISA:
– Few registers, many operands from memory
– Aliases much more common, forwarding necessary
– Incorrect load speculation should be avoided
– If load speculation allowed, predictor probably necessary

• Address translation:
– Can’t use virtual address (must use physical)
– Wait till after TLB lookup is done
– Or, use subset of untranslated bits (page offset)

• Safe for proving inequality (bypassing OK)
• Not sufficient for showing equality (forwarding not OK)

Mikko Lipasti-University of Wisconsin 15

Store Queue Implementation

• Store color assigned at dispatch, increases monotonically
• Load inherits color from preceding store, only forwards if store is older
• Priority logic must find nearest matching store

Mikko Lipasti-University of Wisconsin 16

Address Color

?=

Address

Data

≤

Store Color

Pr
io

rit
y

Lo
gi

c

Load Addr Load Color Forwarded DataLoad Color

Store Queue Complications

• If entries are positional, priority logic looks like carry chain (slow)
• If entries are not positional, priority logic is quite complex

– See [Buyuktosunogly, El-Moursy, Albonesi, 2002 IEEE ASIC/SOC Conference]

• Partial store/load overlap may prevent bypassing (not all bytes present)
– Must stall load instead

• Store color has finite range, clever logic trick:
– For 2n store queue entries, use (n+1) bits for color, e.g. 16 SQ entries requires 5 bits
– If leading bit of oldest store is zero, use unsigned comparisons
– If leading bit of oldest store is one, use signed comparisons

Mikko Lipasti-University of Wisconsin 17

Address Color

?=

Tag

Data

≤

Color

Pr
io

rit
y

Lo
gi

c

Load Addr Load Color ForwardedData

The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Eff. Addr. Gen.

Addr. Translation

D-cache Access

Data Cache

Complete

Retire

Store Buff.

Mikko Lipasti-University of Wisconsin 18

Load/Store Processing
For both Loads and Stores:

1. Effective Address Generation:
Must wait on register value
Must perform address calculation

2. Address Translation:
Must access TLB
Can potentially induce a page fault (exception)

For Loads: D-cache Access (Read)
Can potentially induce a D-cache miss
Check aliasing against store buffer for possible load forwarding
If bypassing store, must be flagged as “speculative” load until completion

For Stores: D-cache Access (Write)
When completing must check aliasing against “speculative” loads
After completion, wait in store buffer for access to D-cache
Can potentially induce a D-cache miss

Mikko Lipasti-University of Wisconsin 19

Easing The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Mikko Lipasti-University of Wisconsin 20

Superscalar Caches
• Increasing issue width => wider caches
• Parallel cache accesses are harder than parallel

functional units

• Fundamental difference:
– Caches have state, functional units don’t

– Operation thru one port affects future operations thru
others

• Several approaches used
– True multi-porting

– Multiple cache copies

– Virtual multi-porting

– Multi-banking (interleaving)

Mikko Lipasti-University of Wisconsin 21

True Multiporting of SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out

Mikko Lipasti-University of Wisconsin 22

True Multiporting of SRAM

• Would be ideal
• Increases cache area

– Array becomes wire-dominated

• Slower access
– Wire delay across larger area

– Cross-coupling capacitance between wires

• Read stability suffers if latch drives bitline
– Need isolating access logic (2T per bitline)

Mikko Lipasti-University of Wisconsin 23

Multiple Cache Copies

• Used in DEC Alpha 21164, IBM Power4

• Independent load paths

• Single shared store path

– May be exclusive with loads, or internally dual-ported

• Bottleneck, not practically scalable beyond 2 paths

• Provides some fault-tolerance

– Parity protection per copy

– Parity error: restore from known-good copy

– Avoids more complex ECC (no RMW for subword writes), still provides SEC

Load Port 0

Load Port 1

Store Port

Mikko Lipasti-University of Wisconsin 24

Virtual Multiporting

• Used in IBM Power2 and DEC 21264

– Wave pipelining: pipeline wires WITHOUT latches

• Time-share a single port

• Not scalable beyond 2 ports

• Requires very careful array design to guarantee balanced paths

– Second access cannot catch up with first access

• Short path constraint limits maximum clock period

– Does not support CPU power states

Port 0

Port 1

Mikko Lipasti-University of Wisconsin 25

Multi-banking or Interleaving

• Used in Intel Pentium (8 banks)
• Need routing network
• Must deal with bank conflicts

– Bank conflicts not known till address generated

– Difficult in non-data-capture machine with speculative scheduling

• Replay – looks just like a cache miss

– Sensitive to bank interleave: fine-grained vs. coarse-grained

Port 0

Port 1

Bank 0

C
rossbar C

ro
ss

ba
r

Port 0

Port 1

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Mikko Lipasti-University of Wisconsin 26

Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching

Mikko Lipasti-University of Wisconsin 27

Caches and Performance

• Caches
– Enable design for common case: cache hit

• Cycle time, pipeline organization
• Recovery policy

– Uncommon case: cache miss
• Fetch from next level

– Apply recursively if multiple levels
• What to do in the meantime?

• What is performance impact?
• Various optimizations are possible

Mikko Lipasti-University of Wisconsin 28

Performance Impact
• Cache hit latency

– Included in “pipeline” portion of CPI
– Typically 1-3 cycles for L1 cache

• Intel/HP McKinley: 1 cycle
– Heroic physical design of cache arrays, peripheral logic
– Only register indirect addressing supported: load r1, (r2)

• IBM Power4: 3 cycles
– Address generation
– Array access
– Word select and align
– Register file write (no bypass)

Mikko Lipasti-University of Wisconsin 29

Cache Hit continued

• Cycle stealing common
– Address generation < cycle
– Array access > cycle
– Clean, FSD cycle boundaries violated

• Speculation rampant
– “Predict” cache hit
– Don’t wait for (full) tag check
– Consume fetched word in pipeline
– Recover/flush when miss is detected

• Reportedly 7 cycles later in Intel Pentium 4

AGEN CACHE

AGEN CACHE

Mikko Lipasti-University of Wisconsin 30

Cache Hits and Performance
• Cache hit latency determined by:

– Cache organization
• Associativity

– Parallel tag checks expensive, slow
– Way select slow (fan-in, wires)

• Block size
– Word select may be slow (fan-in, wires)

• Number of block (sets x associativity)
– Wire delay across array
– “Manhattan distance” = width + height
– Word line delay: width
– Bit line delay: height

• Array design is an art form
– Detailed analog circuit/wire delay modeling
– DRC “flexibility”

Word Line

Bit Line

Mikko Lipasti-University of Wisconsin 31

Cache Misses and Performance
• Miss penalty

– Detect miss: 1 or more cycles
– Find victim (replace block): 1 or more cycles

• Write back if dirty
– Request block from next level: several cycles

• May need to find line from one of many caches (coherence)
– Transfer block from next level: several cycles

• (block size) / (bus width)
– Fill block into data array, update tag array: 1+ cycles
– Resume execution

• In practice: 6 cycles to 100s of cycles

Mikko Lipasti-University of Wisconsin 32

Cache Miss Rate

• Determined by:
– Program characteristics

• Temporal locality
• Spatial locality

– Cache organization
• Block size, associativity, number of sets
• Replacement policy

Mikko Lipasti-University of Wisconsin 33

34

Review: Placement
• Address Range

– Exceeds cache capacity

• Map address to finite capacity
– Called a hash
– Usually just masks high-order bits

• Direct-mapped
– Block can only exist in one location
– Hash collisions cause problems

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size

Mikko Lipasti-University of Wisconsin

35

Review: Identification

• Fully-associative
– Block can exist anywhere
– No more hash collisions

• Identification
– How do I know I have the right

block?
– Called a tag check

• Must store address tags
• Compare against address

• Expensive!
– Tag & comparator per block

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag

Mikko Lipasti-University of Wisconsin

36

Review: Placement

• Set-associative
– Block can be in a

locations
– Hash collisions:

• a still OK

• Identification
– Still perform tag check
– However, only a in

parallel

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data BlocksIndex

?=
?=

?=
?=

Tag

Mikko Lipasti-University of Wisconsin

Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching

Mikko Lipasti-University of Wisconsin 37

38

Replacement

• Cache has finite size
– What do we do when it is full?

• Analogy: desktop full?
– Move books to bookshelf to make room
– Bookshelf full? Move least-used to library
– Etc.

• Same idea:
– Move blocks to next level of cache

Mikko Lipasti-University of Wisconsin

39

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Many policies are possible
– FIFO (first-in-first-out)
– LRU (least recently used), pseudo-LRU
– LFU (least frequently used)
– NMRU (not most recently used)
– NRU
– Pseudo-random (yes, really!)
– Optimal
– Etc

Mikko Lipasti-University of Wisconsin

40

Optimal Replacement Policy?
[Belady, IBM Systems Journal, 1966]
• Evict block with longest reuse distance

– i.e. next reference to block is farthest in future
– Requires knowledge of the future!

• Can’t build it, but can model it with trace
– Process trace in reverse
– [Sugumar&Abraham] describe how to do this in

one pass over the trace with some lookahead
(Cheetah simulator)

• Useful, since it reveals opportunity
– (X,A,B,C,D,X): LRU 4-way SA $, 2nd X will miss
– See [Jimenez MICRO ‘13]

Mikko Lipasti-University of Wisconsin

Least-Recently Used

• For a=2, LRU is equivalent to NMRU
– Single bit per set indicates LRU/MRU
– Set/clear on each access

• For a>2, LRU is difficult/expensive
– Timestamps? How many bits?

• Must find min timestamp on each eviction

– Sorted list? Re-sort on every access?

• List overhead: log2(a) bits /block
– Shift register implementation

41Mikko Lipasti-University of Wisconsin

Practical Pseudo-LRU

• Rather than true LRU, use binary tree
• Each node records which half is older/newer
• Update nodes on each reference
• Follow older pointers to find LRU victim

42

0

0

1
0

1

1

1

J

F

C

B

X

Y

A

Z

Older

Newer

Mikko Lipasti-University of Wisconsin

Practical Pseudo-LRU In Action

43

J

F

C

B

X

Y

A

Z

JY X Z BCF A

011: PLRU
Block B is here

110: MRU
block is here

Z < A Y < X B < C J < F

A > X C < F

A > F

B C F A

J

Y X

Z

Partial Order Encoded in Tree:

Mikko Lipasti-University of Wisconsin

Practical Pseudo-LRU

• Binary tree encodes PLRU partial order
– At each level point to LRU half of subtree

• Each access: flip nodes along path to block
• Eviction: follow LRU path
• Overhead: (a-1)/a bits per block
• Recently revisited [Jimenez MICRO-2013]

44

0

0

1
0

1

1

1

J

F

C

B

X

Y

A

Z

011: PLRU Block
B is here

110: MRU block
is here

Older

Newer

Refs: J,Y,X,Z,B,C,F,A

Mikko Lipasti-University of Wisconsin

True LRU Shortcomings
• Streaming data/scans: x0, x1, …, xn

– Effectively no temporal reuse

• Thrashing: reuse distance > a
– Temporal reuse exists but LRU fails

• All blocks march from MRU to LRU
– Other conflicting blocks are pushed out

• For n>a no blocks remain after scan/thrash
– Incur many conflict misses after scan ends

• Pseudo-LRU sometimes helps a little bit
45Mikko Lipasti-University of Wisconsin

Segmented or Protected LRU
[I/O: Karedla, Love, Wherry, IEEE Computer 27(3), 1994]
[Cache: Wilkerson, Wade, US Patent 6393525, 1999]

• Partition LRU list into filter and reuse lists
• On insert, block goes into filter list
• On reuse (hit), block promoted into reuse list
• Provides scan & some thrash resistance

– Blocks without reuse get evicted quickly
– Blocks with reuse are protected from scan/thrash

blocks

• No storage overhead, but LRU update slightly
more complicated

46Mikko Lipasti-University of Wisconsin

Protected LRU: LIP
• Simplified variant of this idea: LIP

– Qureshi et al. ISCA 2007

• Insert new blocks into LRU position, not
MRU position
– Filter list of size 1, reuse list of size (a-1)

• Do this adaptively: DIP
• Use set dueling to decide LIP vs. LRU

– 1 (or a few) set uses LIP vs. 1 that uses LRU
– Compare hit rate for sets
– Set policy for all other sets to match best set

47Mikko Lipasti-University of Wisconsin

Not Recently Used (NRU)
• Keep NRU state in 1 bit/block

– Bit is set to 0 when installed (assume reuse)
– Bit is set to 0 when referenced (reuse observed)
– Evictions favor NRU=1 blocks
– If all blocks are NRU=0

• Eviction forces all blocks in set to NRU=1
• Picks one as victim (can be pseudo-random, or rotating, or fixed left-

to-right)

• Simple, similar to virtual memory clock algorithm
• Provides some scan and thrash resistance

– Relies on “randomizing” evictions rather than strict LRU order

• Used by Intel Itanium, Sparc T2

48Mikko Lipasti-University of Wisconsin

RRIP [Jaleel et al. ISCA 2010]

• Re-reference Interval Prediction
• Extends NRU to multiple bits

– Start in the middle, promote on hit, demote
over time

• Can predict near-immediate, intermediate,
and distant re-reference

• Low overhead: 2 bits/block
• Static and dynamic variants (like LIP/DIP)

– Set dueling
49Mikko Lipasti-University of Wisconsin

Least Frequently Used

• Counter per block, incremented on reference
• Evictions choose lowest count

– Logic not trivial (a2 comparison/sort)

• Storage overhead
– 1 bit per block: same as NRU
– How many bits are helpful?

50Mikko Lipasti-University of Wisconsin

Cache Replacement Championship

• CRC-1 Held at ISCA 2010
– http://www.jilp.org/jwac-1
– Several variants, improvements
– Simulation infrastructure

• Implementations for all entries

• CRC-2 held at ISCA 2017
– http://crc2.ece.tamu.edu
– Several categories, each with different winner
– Overall winner: Hawkeye (but close)

51Mikko Lipasti-University of Wisconsin

http://www.jilp.org/jwac-1
http://crc2.ece.tamu.edu/

Hawkeye Replacement

• Based on Belady’s OPT algorithm
– Observe from the past
– Train predictor
– Apply predictor to present

52Mikko Lipasti-University of Wisconsin

[Jain, Lin, CRC-2]

53

Replacement Recap
 Replacement policies affect capacity and conflict misses
 Policies covered:

 Belady’s optimal replacement
 Least-recently used (LRU)
 Practical pseudo-LRU (tree LRU)
 Protected LRU

 LIP/DIP variant
 Set dueling to dynamically select policy

 Not-recently-used (NRU) or clock algorithm
 RRIP (re-reference interval prediction)
 Least frequently used (LFU)

 Championship contests

Mikko Lipasti-University of Wisconsin

Replacement References
S. Bansal and D. S. Modha. “CAR: Clock with Adaptive Replacement”, In FAST, 2004.
A. Basu et al. “Scavenger: A New Last Level Cache Architecture with Global Block Priority”. In Micro-40,

2007.
L. A. Belady. A study of replacement algorithms for a virtual-storage computer. In IBM Systems journal,

pages 78–101, 1966.
M. Chaudhuri. “Pseudo-LIFO: The Foundation of a New Family of Replacement Policies for Last-level

Caches”. In Micro, 2009.
F. J. Corbat´o, “A paging experiment with the multics system,” In Honor of P. M. Morse, pp. 217–228, MIT

Press, 1969.
A. Jaleel, et al. “Adaptive Insertion Policies for Managing Shared Caches”. In PACT, 2008.
Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr. , Joel Emer, “High Performance Cache Replacement

Using Re-Reference Interval Prediction “, In ISCA, 2010.
S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency set replacement policy to improve

buffer cache performance,” in Proc. ACM SIGMETRICS Conf., 2002.
T. Johnson and D. Shasha, “2Q: A low overhead high performance buffer management replacement

algorithm,” in VLDB Conf., 1994.
S. Kaxiras et al. Cache decay: exploiting generational behavior to reduce cache leakage power. In ISCA-28,

2001.
A. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block correlating prefetchers. In ISCA-28,

2001
D. Lee et al. “LRFU: A spectrum of policies that subsumes the least recently used and least frequently

used policies,” IEEE Trans.Computers, vol. 50, no. 12, pp. 1352–1360, 2001.

54Mikko Lipasti-University of Wisconsin

Replacement References
W. Lin et al. “Predicting last-touch references under optimal replacement.” Technical Report CSE-TR-447-

02, U. of Michigan, 2002.
H. Liu et al. “Cache Bursts: A New Approach for Eliminating Dead Blocks and Increasing Cache Efficiency.”

In Micro-41, 2008.
G. Loh. “Extending the Effectiveness of 3D-Stacked DRAM Caches with an Adaptive Multi-Queue Policy”.

In Micro, 2009.
C.-K. Luk et al. Pin: building customized program analysis tools with dynamic instrumentation. In PLDI,

pages 190–200, 2005.
N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead replacement cache,” in FAST, 2003.
E. J. O’Neil et al. “The LRU-K page replacement algorithm for database disk buffering,” in Proc. ACM

SIGMOD Conf., pp. 297–306, 1993.
M. Qureshi, A. Jaleel, Y. Patt, S. Steely, J. Emer. “Adaptive Insertion Policies for High Performance

Caching”. In ISCA-34, 2007.
K. Rajan and G. Ramaswamy. “Emulating Optimal Replacement with a Shepherd Cache”. In Micro-40,

2007.
J. T. Robinson and M. V. Devarakonda, “Data cache management using frequency-based replacement,” in

SIGMETRICS Conf, 1990.
R. Sugumar and S. Abraham, “Efficient simulation of caches under optimal replacement with applications

to miss characterization,” in SIGMETRICS, 1993.
Y. Xie, G. Loh. “PIPP: Promotion/Insertion Pseudo-Partitioning of Multi-Core Shared Caches.” In ISCA-36,

2009
Y. Zhou and J. F. Philbin, “The multi-queue replacement algorithm for second level buffer caches,” in

USENIX Annual Tech. Conf, 2001.

55Mikko Lipasti-University of Wisconsin

Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching

Mikko Lipasti-University of Wisconsin 56

Prefetching
• Even “demand fetching” prefetches other

words in block
– Spatial locality

• Prefetching is useless
– Unless a prefetch costs less than demand miss

• Ideally, prefetches should
– Always get data before it is referenced

– Never get data not used

– Never prematurely replace data

– Never interfere with other cache activity
Mikko Lipasti-University of Wisconsin 57

Software Prefetching
• For example:

do j= 1, cols

do ii = 1 to rows by BLOCK

prefetch (&(x[ii,j])+BLOCK) # prefetch one block ahead

do i = ii to ii + BLOCK-1

sum = sum + x[i,j]

• How many blocks ahead should we prefetch?
– Affects timeliness of prefetches

– Must be scaled based on miss latency

Mikko Lipasti-University of Wisconsin 58

Hardware Prefetching

• What to prefetch
– One block spatially ahead

– N blocks spatially ahead

– Based on observed stride, track/prefetch multiple strides

• Training hardware prefetcher
– On every reference (expensive)

– On every miss (information loss)

– Misses at what level of cache?

– Prefetchers at every level of cache?

• Pressure for nonblocking miss support (MSHRs)

Mikko Lipasti-University of Wisconsin 59

Prefetching for Pointer-based Data Structures
What to prefetch?

– Next level of tree: n+1, n+2, n+?

• Entire tree? Or just one path

– Next node in linked list: n+1, n+2, n+?

Jump-pointer prefetching [Roth, Sohi, ISCA 1999]

– Software places jump pointers in data structure

Content-driven data prefetching [Cooksey et al. ASPLOS 2002]

– Hardware scans blocks for pointers

0xafde 0xfde0

0xde04

Mikko Lipasti-University of Wisconsin 60

Stream or Prefetch Buffers
• Prefetching causes capacity and conflict misses (pollution)

– Can displace useful blocks

• Aimed at compulsory and capacity misses
• Prefetch into buffers, NOT into cache

– On miss start filling stream buffer with successive lines

– Check both cache and stream buffer

• Hit in stream buffer => move line into cache (promote)

• Miss in both => clear and refill stream buffer

• Performance
– Very effective for I-caches, less for D-caches

– Multiple buffers to capture multiple streams (better for D-caches)

• Can use with any prefetching scheme to avoid pollution

Mikko Lipasti-University of Wisconsin 61

Case Study: Global History Buffer
[K. Nesbit, J. Smith, “Prefetching using a global history buffer”, HPCA 2004]

• Following slides © K. Nesbit, J. Smith

• Hardware prefetching scheme

• Monitors miss stream

• Learns correlations

• Issues prefetches for likely next address

Mikko Lipasti-University of Wisconsin 62

63

Markov Prefetching
• Markov prefetching forms address correlations

– Joseph and Grunwald (ISCA ‘97)
• Uses global memory addresses as states in the Markov graph
• Correlation Table approximates Markov graph

B

C

B

A

B

C

Correlation Table
1st predict. 2nd predict.

miss
address

A B C A B C B C . . .

A B

C

1

.5

Miss Address Stream

1
.5

Markov Graph

A

Mikko Lipasti-University of Wisconsin

64

Correlation Prefetching
• Distance Prefetching forms delta correlations

– Kandiraju and Sivasubramaniam (ISCA ‘02)
• Delta-based prefetching leads to much smaller table than

“classical” Markov Prefetching
• Delta-based prefetching can remove compulsory misses

Markov Prefetching

1 1 -2 1 1 -1 1
Global Delta Stream
Distance Prefetching

27 28 29 27 28 29 28 29
Miss Address Stream

1
1

-1 -2

-2
-1
1

global
delta28

29
28 29

27
28
29

1st predict. 2nd predict.miss
address

1st predict. 2nd predict.

Mikko Lipasti-University of Wisconsin

65

Global History Buffer (GHB)
• Holds miss address

history in FIFO order
• Linked lists within GHB

connect related
addresses
– Same static load
– Same global miss address
– Same global delta

Global History Buffer

miss addresses

Index Table

FI

Load PC

 Linked list walk is short
compared with L2 miss
latency

FO

Mikko Lipasti-University of Wisconsin

66

Miss Address Stream

Global History Buffer
miss address pointerpointer

Index Table

28
29 29

29

head pointer

28

27

27

27 28 29 27 28 29 28

27

GHB - Example

=> Current
=> Prefetches

Key

28
29
28

29

Global Miss
Address

Mikko Lipasti-University of Wisconsin

67

GHB – Deltas

14 8

1 8 8 1 4 4 1 8 8
Global Delta Stream

Miss Address Stream
27 28 36 44 45 49 53 54 62 70 71

1

1

8

=> Current
=> Prefetches

Key

8

4

4

WidthDepthHybridMarkov Graph

.3 .3

.3 .7
.7.7

71 + 8 => 79

79 + 8 => 87

Prefetches
71 + 4 => 75

79 + 4 => 79

Prefetches
71 + 8 => 79

71 + 4 => 75

Prefetches

Mikko Lipasti-University of Wisconsin

68

GHB – Hybrid Delta

• Width prefetching suffers from poor accuracy
and short look-ahead

• Depth prefetching has good look-ahead, but
may miss prefetch opportunities when a
number of “next” addresses have similar
probability

• The hybrid method combines depth and width

Mikko Lipasti-University of Wisconsin

69

79 + 4 => 79

71 + 4 => 75

Global History Buffer
miss address pointerpointer

Index Table

head pointer

27
28
36
44
45
49
53

1

GHB - Hybrid Example

1

=> Current
=> Prefetches

Key

54
62
70

4
8

8
8

Global
Delta

1 8 8 1 4 4 1 8 8
Global Delta Stream

Miss Address Stream
27 28 36 44 45 49 53 54 62 70 71

1

8

4
4

71

8

71 + 8 => 79

79 + 8 => 87

Prefetches

Mikko Lipasti-University of Wisconsin

Prefetching Championships

• DPC-1 held at HPCA 2009
– http://www.jilp.org/dpc
– Winner: AMPM prefetching

• Robust to out-of-order issue by capturing patterns instead of strides

• DPC-2 held at ISCA 2015
– http://comparch-conf.gatech.edu/dpc2
– Winner: Best-offset prefetcher

• Based on ideas from Sandbox Prefetcher [Pugsley et al. HPCA 2014]
• Considers prefetch timeliness

• Simulation infrastructure
– Implementations for all entries

70Mikko Lipasti-University of Wisconsin

http://www.jilp.org/dpc
http://comparch-conf.gatech.edu/dpc2

Prefetching Recap
• Prefetching anticipates future memory

references
– Software prefetching

– Next-block, stride prefetching

– Global history buffer prefetching

• Issues/challenges
– Accuracy

– Timeliness

– Overhead (bandwidth)

– Conflicts (displace useful data)
Mikko Lipasti-University of Wisconsin 71

Summary
• Memory Data Flow

– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching

Mikko Lipasti-University of Wisconsin 72

	Memory Data Flow�ECE/CS 752 Fall 2017
	High-IPC Processor
	Memory Data Flow
	Memory Data Dependences
	Memory Data Dependences
	The DAXPY Example
	Out-of-order Load Issue
	Optimizing Load/Store Disambiguation
	Speculative Disambiguation
	Speculative Disambiguation: Load Bypass
	Speculative Disambiguation: Load Forward
	Speculative Disambiguation: Safe Speculation
	Speculative Disambiguation: Violation
	Use of Prediction
	Load/Store Disambiguation Discussion
	Store Queue Implementation
	Store Queue Complications
	The Memory Bottleneck
	Load/Store Processing
	Easing The Memory Bottleneck
	Superscalar Caches
	True Multiporting of SRAM
	True Multiporting of SRAM
	Multiple Cache Copies
	Virtual Multiporting
	Multi-banking or Interleaving
	Memory Data Flow
	Caches and Performance
	Performance Impact
	Cache Hit continued
	Cache Hits and Performance
	Cache Misses and Performance
	Cache Miss Rate
	Review: Placement
	Review: Identification
	Review: Placement
	Memory Data Flow
	Replacement
	Replacement
	Optimal Replacement Policy?
	Least-Recently Used
	Practical Pseudo-LRU
	Practical Pseudo-LRU In Action
	Practical Pseudo-LRU
	True LRU Shortcomings
	Segmented or Protected LRU
	Protected LRU: LIP
	Not Recently Used (NRU)
	RRIP [Jaleel et al. ISCA 2010]
	Least Frequently Used
	Cache Replacement Championship
	Hawkeye Replacement
	Replacement Recap
	Replacement References
	Replacement References
	Memory Data Flow
	Prefetching
	Software Prefetching
	Hardware Prefetching
	Prefetching for Pointer-based Data Structures
	Stream or Prefetch Buffers
	Case Study: Global History Buffer
	Markov Prefetching
	Correlation Prefetching
	Global History Buffer (GHB)
	GHB - Example
	GHB – Deltas
	GHB – Hybrid Delta
	GHB - Hybrid Example
	Prefetching Championships
	Prefetching Recap
	Summary

