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Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching
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Memory Data Dependences
• Besides branches, long memory latencies are one of the biggest 

performance challenges today.

• To preserve sequential (in-order) state in the data caches and 
external memory (so that recovery from exceptions is possible) 
stores are performed in order. This takes care of antidependences 
and output dependences to memory locations.

• However, loads can be issued out of order with respect to stores if 
the out-of-order loads check for data dependences with respect to 
previous, pending stores.

WAW WAR RAW
store X load X store X

: : :

store X store X load X
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Memory Data Dependences
• “Memory Aliasing” = Two memory references involving the same memory 

location (collision of two memory addresses).
• “Memory Disambiguation” = Determining whether two memory references 

will alias or not (whether there is a dependence or not).
• Memory Dependency Detection:

– Must compute effective addresses of both memory references
– Effective addresses can depend on run-time data and other instructions
– Comparison of addresses require much wider comparators

Example code:

(1) STORE V

(2) ADD

(3) LOAD W

(4) LOAD X

(5) LOAD V

(6) ADD

(7) STORE W

RAW

WAR
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The DAXPY Example
Y(i) = A * X(i) + Y(i)

LD      F0, a
ADDI      R4, Rx, #512 ; last address 

Loop:
LD      F2, 0(Rx) ; load X(i)
MULTD  F2, F0, F2 ; A*X(i)
LD      F4, 0(Ry) ; load Y(i)
ADDD    F4, F2, F4 ; A*X(i) + Y(i)
SD      F4, 0(Ry) ; store into Y(i)
ADDI      Rx, Rx, #8 ; inc. index to X
ADDI      Ry, Ry, #8 ; inc. index to Y
SUB      R20, R4, Rx ; compute bound
BNZ      R20, loop ; check if done

LD

LDMULTD

ADDD

SD

Total Order
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Out-of-order Load Issue

Required for high performance
Hardware must monitor prior stores

– No alias: loads free to issue
– Alias: load must honor RAW

Complications
– Large comparators (64-bit addresses)
– Relative order of interleaved stores and loads

• (must forward from most recent prior store)

– Speculative vs. non-speculative load issue
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Optimizing Load/Store Disambiguation
Non-speculative load/store disambiguation

1. Loads wait for addresses of all prior stores
2. Full address comparison
3. Bypass if no match, forward if match

Step (1) can unnecessarily limit performance:

load r5,MEM[r3]  ← cache miss
store r7, MEM[r5] ← RAW for agen, stalled
…
load r8, MEM[r9] ← independent load stalled
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Speculative Disambiguation
• What if aliases are rare?

1. Loads don’t wait for addresses of 
all prior stores

2. Full address comparison of stores 
that are ready

3. Bypass if no match, forward if 
match

4. Check all store addresses when 
they commit

– No matching loads – speculation 
was correct

– Matching unbypassed load –
incorrect speculation

5. Replay starting from incorrect 
load

Load
Queue

Store
Queue

Load/Store RS

Agen

Reorder Buffer

Mem
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Speculative Disambiguation: Load Bypass

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??
i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x400A

• i1  and i2 issue in program order
• i2 checks store queue (no match)
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Speculative Disambiguation: Load Forward

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??
i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x800A

• i1  and i2 issue in program order
• i2 checks store queue (match=>forward)
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Speculative Disambiguation: Safe Speculation

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??
i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x400C

• i1 and i2 issue out of program order
• i1 checks load queue at commit (no match)
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Speculative Disambiguation: Violation

Load
Queue

Store
Queue

Agen

Reorder Buffer

Mem

i1:  st R3, MEM[R8]: ??
i2:  ld  R9, MEM[R4]: ??

i1:  st R3, MEM[R8]: x800Ai2:  ld  R9, MEM[R4]: x800A

• i1 and i2 issue out of program order
• i1 checks load queue at commit (match)

– i2 marked for replay
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Use of Prediction
• If aliases are rare: static prediction

– Predict no alias every time
• Why even implement forwarding? PowerPC 620 doesn’t

– Pay misprediction penalty rarely
• If aliases are more frequent: dynamic prediction

– Use PHT-like history table for loads
• If alias predicted: delay load
• If aliased pair predicted: forward from store to load

– More difficult to predict pair [store sets, Alpha 21264]
– Pay misprediction penalty rarely

• Memory cloaking [Moshovos, Sohi, ISCA 1997]
– Predict load/store pair
– Directly copy store data register to load target register
– Reduce data transfer latency to absolute minimum
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Load/Store Disambiguation Discussion
• RISC ISA:

– Many registers, most variables allocated to registers
– Aliases are rare
– Most important to not delay loads (bypass)
– Alias predictor may/may not be necessary

• CISC ISA:
– Few registers, many operands from memory
– Aliases much more common, forwarding necessary
– Incorrect load speculation should be avoided
– If load speculation allowed, predictor probably necessary

• Address translation:
– Can’t use virtual address (must use physical)
– Wait till after TLB lookup is done
– Or, use subset of untranslated bits (page offset)

• Safe for proving inequality (bypassing OK)
• Not sufficient for showing equality (forwarding not OK)
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Store Queue Implementation

• Store color assigned at dispatch, increases monotonically
• Load inherits color from preceding store, only forwards if store is older
• Priority logic must find nearest matching store
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Store Queue Complications

• If entries are positional, priority logic looks like carry chain (slow)
• If entries are not positional, priority logic is quite complex

– See [Buyuktosunogly, El-Moursy, Albonesi, 2002 IEEE ASIC/SOC Conference] 

• Partial store/load overlap may prevent bypassing (not all bytes present)
– Must stall load instead

• Store color has finite range, clever logic trick:
– For 2n store queue entries, use (n+1) bits for color, e.g. 16 SQ entries requires 5 bits
– If leading bit of oldest store is zero, use unsigned comparisons
– If leading bit of oldest store is one, use signed comparisons
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The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Eff. Addr. Gen.

Addr. Translation

D-cache Access

Data Cache

Complete

Retire

Store Buff.
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Load/Store Processing
For both Loads and Stores:

1. Effective Address Generation:
Must wait on register value
Must perform address calculation

2. Address Translation:
Must access TLB
Can potentially induce a page fault (exception)

For Loads: D-cache Access (Read)
Can potentially induce a D-cache miss
Check aliasing against store buffer for possible load forwarding
If bypassing store, must be flagged as “speculative” load until completion

For Stores: D-cache Access (Write)
When completing must check aliasing against “speculative” loads
After completion, wait in store buffer for access to D-cache
Can potentially induce a D-cache miss
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Easing The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire
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Load/
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Missed
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Superscalar Caches
• Increasing issue width => wider caches
• Parallel cache accesses are harder than parallel 

functional units

• Fundamental difference: 
– Caches have state, functional units don’t

– Operation thru one port affects future operations thru 
others

• Several approaches used
– True multi-porting

– Multiple cache copies

– Virtual multi-porting

– Multi-banking (interleaving)
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True Multiporting of SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out
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True Multiporting of SRAM

• Would be ideal
• Increases cache area

– Array becomes wire-dominated

• Slower access
– Wire delay across larger area

– Cross-coupling capacitance between wires

• Read stability suffers if latch drives bitline
– Need isolating access logic (2T per bitline)
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Multiple Cache Copies

• Used in DEC Alpha 21164, IBM Power4

• Independent load paths

• Single shared store path

– May be exclusive with loads, or internally dual-ported

• Bottleneck, not practically scalable beyond 2 paths

• Provides some fault-tolerance

– Parity protection per copy

– Parity error: restore from known-good copy

– Avoids more complex ECC (no RMW for subword writes), still provides SEC

Load Port 0

Load Port 1

Store Port
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Virtual Multiporting

• Used in IBM Power2 and DEC 21264 

– Wave pipelining: pipeline wires WITHOUT latches

• Time-share a single port

• Not scalable beyond 2 ports

• Requires very careful array design to guarantee balanced paths

– Second access cannot catch up with first access

• Short path constraint limits maximum clock period

– Does not support CPU power states

Port 0

Port 1
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Multi-banking or Interleaving

• Used in Intel Pentium (8 banks)
• Need routing network
• Must deal with bank conflicts

– Bank conflicts not known till address generated

– Difficult in non-data-capture machine with speculative scheduling

• Replay – looks just like a cache miss

– Sensitive to bank interleave: fine-grained vs. coarse-grained

Port 0

Port 1

Bank 0

C
rossbar C

ro
ss

ba
r

Port 0

Port 1

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7
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Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching
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Caches and Performance

• Caches
– Enable design for common case: cache hit

• Cycle time, pipeline organization
• Recovery policy

– Uncommon case: cache miss
• Fetch from next level

– Apply recursively if multiple levels
• What to do in the meantime?

• What is performance impact?
• Various optimizations are possible
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Performance Impact
• Cache hit latency

– Included in “pipeline” portion of CPI
– Typically 1-3 cycles for L1 cache

• Intel/HP McKinley: 1 cycle
– Heroic physical design of cache arrays, peripheral logic
– Only register indirect addressing supported: load r1, (r2)

• IBM Power4: 3 cycles
– Address generation
– Array access
– Word select and align
– Register file write (no bypass)
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Cache Hit continued

• Cycle stealing common
– Address generation < cycle
– Array access > cycle
– Clean, FSD cycle boundaries violated

• Speculation rampant
– “Predict” cache hit
– Don’t wait for (full) tag check
– Consume fetched word in pipeline
– Recover/flush when miss is detected

• Reportedly 7 cycles later in Intel Pentium 4

AGEN CACHE

AGEN CACHE
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Cache Hits and Performance
• Cache hit latency determined by:

– Cache organization
• Associativity

– Parallel tag checks expensive, slow
– Way select slow (fan-in, wires)

• Block size
– Word select may be slow (fan-in, wires)

• Number of block (sets x associativity)
– Wire delay across array
– “Manhattan distance” = width + height
– Word line delay: width
– Bit line delay: height

• Array design is an art form
– Detailed analog circuit/wire delay modeling
– DRC “flexibility”

Word Line

Bit Line
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Cache Misses and Performance
• Miss penalty

– Detect miss: 1 or more cycles
– Find victim (replace block): 1 or more cycles

• Write back if dirty
– Request block from next level: several cycles

• May need to find line from one of many caches (coherence)
– Transfer block from next level: several cycles

• (block size) / (bus width)
– Fill block into data array, update tag array: 1+ cycles
– Resume execution

• In practice: 6 cycles to 100s of cycles
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Cache Miss Rate

• Determined by:
– Program characteristics

• Temporal locality
• Spatial locality

– Cache organization
• Block size, associativity, number of sets
• Replacement policy
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Review: Placement
• Address Range

– Exceeds cache capacity

• Map address to finite capacity
– Called a hash
– Usually just masks high-order bits

• Direct-mapped
– Block can only exist in one location
– Hash collisions cause problems

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size
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Review: Identification

• Fully-associative
– Block can exist anywhere
– No more hash collisions

• Identification
– How do I know I have the right 

block?
– Called a tag check

• Must store address tags
• Compare against address

• Expensive!
– Tag & comparator per block

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag

Mikko Lipasti-University of Wisconsin



36

Review: Placement

• Set-associative
– Block can be in a

locations
– Hash collisions: 

• a still OK

• Identification
– Still perform tag check
– However, only a in 

parallel

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data BlocksIndex

?=
?=

?=
?=

Tag
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Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching
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Replacement

• Cache has finite size
– What do we do when it is full?

• Analogy: desktop full?
– Move books to bookshelf to make room
– Bookshelf full? Move least-used to library
– Etc.

• Same idea:
– Move blocks to next level of cache
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Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Many policies are possible
– FIFO (first-in-first-out)
– LRU (least recently used), pseudo-LRU
– LFU (least frequently used)
– NMRU (not most recently used)
– NRU
– Pseudo-random (yes, really!)
– Optimal
– Etc
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Optimal Replacement Policy?
[Belady, IBM Systems Journal, 1966]
• Evict block with longest reuse distance

– i.e. next reference to block is farthest in future
– Requires knowledge of the future!

• Can’t build it, but can model it with trace
– Process trace in reverse
– [Sugumar&Abraham] describe how to do this in 

one pass over the trace with some lookahead
(Cheetah simulator)

• Useful, since it reveals opportunity
– (X,A,B,C,D,X): LRU 4-way SA $, 2nd X will miss
– See [Jimenez MICRO ‘13]
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Least-Recently Used

• For a=2, LRU is equivalent to NMRU
– Single bit per set indicates LRU/MRU
– Set/clear on each access

• For a>2, LRU is difficult/expensive
– Timestamps? How many bits?

• Must find min timestamp on each eviction

– Sorted list? Re-sort on every access?

• List overhead: log2(a) bits /block
– Shift register implementation
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Practical Pseudo-LRU

• Rather than true LRU, use binary tree
• Each node records which half is older/newer
• Update nodes on each reference
• Follow older pointers to find LRU victim

42
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Practical Pseudo-LRU In Action

43

J

F

C

B

X

Y

A

Z

JY X Z BCF A

011: PLRU 
Block B is here

110: MRU 
block is here

Z < A Y < X B < C J < F

A > X C < F

A > F

B C F A

J

Y X

Z

Partial Order Encoded in Tree:
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Practical Pseudo-LRU

• Binary tree encodes PLRU partial order
– At each level point to LRU half of subtree

• Each access: flip nodes along path to block
• Eviction: follow LRU path
• Overhead: (a-1)/a bits per block
• Recently revisited [Jimenez MICRO-2013]
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True LRU Shortcomings
• Streaming data/scans: x0, x1, …, xn

– Effectively no temporal reuse

• Thrashing: reuse distance > a
– Temporal reuse exists but LRU fails

• All blocks march from MRU to LRU
– Other conflicting blocks are pushed out

• For n>a no blocks remain after scan/thrash
– Incur many conflict misses after scan ends

• Pseudo-LRU sometimes helps a little bit
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Segmented or Protected LRU
[I/O: Karedla, Love, Wherry, IEEE Computer 27(3), 1994]
[Cache: Wilkerson, Wade, US Patent 6393525, 1999]

• Partition LRU list into filter and reuse lists
• On insert, block goes into filter list
• On reuse (hit), block promoted into reuse list
• Provides scan & some thrash resistance

– Blocks without reuse get evicted quickly
– Blocks with reuse are protected from scan/thrash 

blocks

• No storage overhead, but LRU update slightly 
more complicated
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Protected LRU: LIP
• Simplified variant of this idea: LIP

– Qureshi et al. ISCA 2007

• Insert new blocks into LRU position, not 
MRU position
– Filter list of size 1, reuse list of size (a-1)

• Do this adaptively: DIP
• Use set dueling to decide LIP vs. LRU

– 1 (or a few) set uses LIP vs. 1 that uses LRU
– Compare hit rate for sets
– Set policy for all other sets to match best set
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Not Recently Used (NRU)
• Keep NRU state in 1 bit/block

– Bit is set to 0 when installed (assume reuse)
– Bit is set to 0 when referenced (reuse observed)
– Evictions favor NRU=1 blocks
– If all blocks are NRU=0

• Eviction forces all blocks in set to NRU=1
• Picks one as victim (can be pseudo-random, or rotating, or fixed left-

to-right)

• Simple, similar to virtual memory clock algorithm
• Provides some scan and thrash resistance

– Relies on “randomizing”  evictions rather than strict LRU order

• Used by Intel Itanium, Sparc T2

48Mikko Lipasti-University of Wisconsin



RRIP [Jaleel et al. ISCA 2010]

• Re-reference Interval Prediction
• Extends NRU to multiple bits

– Start in the middle, promote on hit, demote 
over time

• Can predict near-immediate, intermediate, 
and distant re-reference

• Low overhead: 2 bits/block
• Static and dynamic variants (like LIP/DIP)

– Set dueling
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Least Frequently Used

• Counter per block, incremented on reference
• Evictions choose lowest count

– Logic not trivial (a2 comparison/sort)

• Storage overhead
– 1 bit per block: same as NRU
– How many bits are helpful?
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Cache Replacement Championship

• CRC-1 Held at ISCA 2010
– http://www.jilp.org/jwac-1
– Several variants, improvements
– Simulation infrastructure

• Implementations for all entries

• CRC-2 held at ISCA 2017
– http://crc2.ece.tamu.edu
– Several categories, each with different winner
– Overall winner: Hawkeye (but close)
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Hawkeye Replacement

• Based on Belady’s OPT algorithm
– Observe from the past
– Train predictor
– Apply predictor to present

52Mikko Lipasti-University of Wisconsin
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Replacement Recap
 Replacement policies affect capacity and conflict misses
 Policies covered:

 Belady’s optimal replacement
 Least-recently used (LRU)
 Practical pseudo-LRU (tree LRU)
 Protected LRU

 LIP/DIP variant
 Set dueling to dynamically select policy

 Not-recently-used (NRU) or clock algorithm
 RRIP (re-reference interval prediction)
 Least frequently used (LFU)

 Championship contests
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Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching
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Prefetching
• Even “demand fetching” prefetches other 

words in block
– Spatial locality

• Prefetching is useless 
– Unless a prefetch costs less than demand miss

• Ideally, prefetches should
– Always get data before it is referenced

– Never get data not used

– Never prematurely replace data

– Never interfere with other cache activity
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Software Prefetching
• For example:

do j= 1, cols

do ii = 1 to rows by BLOCK

prefetch (&(x[ii,j])+BLOCK)    # prefetch one block ahead

do i = ii to ii + BLOCK-1

sum = sum + x[i,j]

• How many blocks ahead should we prefetch?
– Affects timeliness of prefetches

– Must be scaled based on miss latency
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Hardware Prefetching

• What to prefetch
– One block spatially ahead

– N blocks spatially ahead

– Based on observed stride, track/prefetch multiple strides

• Training hardware prefetcher
– On every reference (expensive)

– On every miss (information loss)

– Misses at what level of cache?

– Prefetchers at every level of cache?

• Pressure for nonblocking miss support (MSHRs)
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Prefetching for Pointer-based Data Structures
What to prefetch?

– Next level of tree: n+1, n+2, n+?

• Entire tree? Or just one path

– Next node in linked list: n+1, n+2, n+?

Jump-pointer prefetching [Roth, Sohi, ISCA 1999]

– Software places jump pointers in data structure

Content-driven data prefetching [Cooksey et al. ASPLOS 2002]

– Hardware scans blocks for pointers

0xafde 0xfde0

0xde04
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Stream or Prefetch Buffers
• Prefetching causes capacity and conflict misses (pollution)

– Can displace useful blocks

• Aimed at compulsory and capacity misses
• Prefetch into buffers, NOT into cache

– On miss start filling stream buffer with successive lines

– Check both cache and stream buffer

• Hit in stream buffer => move line into cache (promote)

• Miss in both => clear and refill stream buffer

• Performance
– Very effective for I-caches, less for D-caches

– Multiple buffers to capture multiple streams (better for D-caches)

• Can use with any prefetching scheme to avoid pollution
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Case Study: Global History Buffer
[K. Nesbit, J. Smith, “Prefetching using a global history buffer”, HPCA 2004]

• Following slides © K. Nesbit, J. Smith

• Hardware prefetching scheme

• Monitors miss stream

• Learns correlations

• Issues prefetches for likely next address
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Markov Prefetching
• Markov prefetching forms address correlations 

– Joseph and Grunwald (ISCA ‘97)
• Uses global memory addresses as states in the Markov graph
• Correlation Table approximates Markov graph

B

C

B

A

B

C

Correlation Table
1st predict. 2nd predict.

miss 
address

A  B  C  A  B  C  B  C . . .

A B

C

1

.5

Miss Address Stream

1
.5

Markov Graph

A
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Correlation Prefetching
• Distance Prefetching forms delta correlations 

– Kandiraju and Sivasubramaniam (ISCA ‘02)
• Delta-based prefetching leads to much smaller table than 

“classical” Markov Prefetching
• Delta-based prefetching can remove compulsory misses

Markov Prefetching

1  1  -2  1   1  -1  1
Global Delta Stream
Distance Prefetching

27  28  29  27  28  29  28  29
Miss Address Stream

1
1

-1 -2

-2
-1
1

global 
delta28

29
28 29

27
28
29

1st predict. 2nd predict.miss 
address

1st predict. 2nd predict.
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Global History Buffer (GHB)
• Holds miss address 

history in FIFO order
• Linked lists within GHB 

connect related 
addresses
– Same static load
– Same global miss address
– Same global delta

Global History Buffer

miss addresses

Index Table

FI

Load PC

 Linked list walk is short 
compared with L2 miss 
latency

FO
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Miss Address Stream

Global History Buffer
miss address pointerpointer

Index Table

28
29 29

29

head pointer

28

27

27

27  28  29  27  28  29  28

27

GHB - Example

=> Current 
=> Prefetches

Key

28
29
28

29

Global Miss
Address
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GHB – Deltas

14 8

1  8  8  1  4  4  1  8  8
Global Delta Stream

Miss Address Stream
27  28  36  44  45  49  53  54  62  70 71    

1    

1

8

=> Current 
=> Prefetches

Key

8

4

4

WidthDepthHybridMarkov Graph

.3 .3

.3 .7
.7.7

71 + 8 => 79

79 + 8 => 87

Prefetches
71 + 4 => 75

79 + 4 => 79

Prefetches
71 + 8 => 79

71 + 4 => 75

Prefetches
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GHB – Hybrid Delta

• Width prefetching suffers from poor accuracy 
and short look-ahead

• Depth prefetching has good look-ahead, but 
may miss prefetch opportunities when a 
number of “next” addresses have similar 
probability

• The hybrid method combines depth and width
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79 + 4 => 79

71 + 4 => 75

Global History Buffer
miss address pointerpointer

Index Table

head pointer

27
28
36
44
45
49
53

1

GHB - Hybrid Example

1

=> Current 
=> Prefetches

Key

54
62
70

4
8

8
8

Global
Delta

1  8  8  1  4  4  1  8  8
Global Delta Stream

Miss Address Stream
27  28  36  44  45  49  53  54  62  70 71    

1    

8

4
4

71

8

71 + 8 => 79

79 + 8 => 87

Prefetches
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Prefetching Championships

• DPC-1 held at HPCA 2009
– http://www.jilp.org/dpc
– Winner: AMPM prefetching

• Robust to out-of-order issue by capturing patterns instead of strides

• DPC-2 held at ISCA 2015
– http://comparch-conf.gatech.edu/dpc2
– Winner: Best-offset prefetcher

• Based on ideas from Sandbox Prefetcher [Pugsley et al. HPCA 2014]
• Considers prefetch timeliness

• Simulation infrastructure
– Implementations for all entries
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Prefetching Recap
• Prefetching anticipates future memory 

references
– Software prefetching

– Next-block, stride prefetching

– Global history buffer prefetching

• Issues/challenges
– Accuracy

– Timeliness

– Overhead (bandwidth)

– Conflicts (displace useful data)
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Summary
• Memory Data Flow

– Memory Data Dependences
– Load Bypassing
– Load Forwarding
– Speculative Disambiguation
– The Memory Bottleneck

• Cache Hits and Cache Misses
• Replacement Policies
• Prefetching
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