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Advanced Branch Prediction 

• Control Flow Speculation 
– Branch Speculation 
– Mis-speculation Recovery 

• Branch Direction Prediction 
– Static Prediction 
– Dynamic Prediction 
– Hybrid Prediction 

• Branch Target Prediction 
• High-bandwidth Fetch 
• High-Frequency Fetch 



Branch Speculation 

• Leading Speculation 
– Typically done during the Fetch stage 

– Based on potential branch instruction(s) in the current fetch group 

• Trailing Confirmation 
– Typically done during the Branch Execute stage 

– Based on the next Branch instruction to finish execution 
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Branch Speculation 

• Leading Speculation 
1. Tag speculative instructions 

2. Advance branch and following instructions 

3. Buffer addresses of speculated branch 
instructions 

• Trailing Confirmation 
1. When branch resolves, remove/deallocate 

speculation tag 

2. Permit completion of branch and following 
instructions 



Branch Speculation 

• Start new correct path 

– Must remember the alternate (non-predicted) path 

• Eliminate incorrect path 

– Must ensure that the mis-speculated instructions 
produce no side effects 
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Mis-speculation Recovery 

• Start new correct path 

1. Update PC with computed branch target (if predicted 
NT) 

2. Update PC with sequential instruction address (if 
predicted T) 

3. Can begin speculation again at next branch 

• Eliminate incorrect path 

1. Use tag(s) to deallocate ROB entries occupied by 
speculative instructions 

2. Invalidate all instructions in the decode and dispatch 
buffers, as well as those in reservation stations 



Tracking Instructions 

• Assign branch tags 
– Allocated in circular order 

– Instruction carries this tag throughout 
processor 

• Track instruction groups 
– Instructions managed in groups, max. one 

branch per group 

– ROB structured as groups 
• Leads to some inefficiency 

• Simpler tracking of speculative instructions 
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Static Branch Prediction 

• Single-direction 
– Always not-taken: Intel i486 

• Backwards Taken/Forward Not Taken 
– Loop-closing branches 

– Used as backup in Pentium Pro, II, III, 4 

• Heuristic-based: 
  void * p = malloc (numBytes); 

  if (p == NULL) 

        errorHandlingFunction( ); 



Static Branch Prediction 

• Heuristic-based: Ball/Larus 
– Thomas Ball and James R. Larus.  Branch Prediction for Free.  ACM 

SIGPLAN Symposium on Principles and Practice of Parallel 
Programming, pages 300-313, May 1993. 

Heuristic 
Name 

Description 

Loop Branch If the branch target is back to the head of a loop, predict taken. 

Pointer 
If a branch compares a pointer with NULL, or if two pointers are compared, predict in the 

direction that corresponds to the pointer being not NULL, or the two pointers not being equal. 

Opcode 
If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a 

constant, predict in the direction that corresponds to the test evaluating to false. 

Guard 
If the operand of the branch instruction is a register that gets used before being redefined in the 

successor block, predict that the branch goes to the successor block. 

Loop Exit 
If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the 

branch does not go to the successor that is the loop exit. 

Loop Header Predict that the successor block of a branch that is a loop header or a loop pre-header is taken. 

Call 
If a successor block contains a subroutine call, predict that the branch goes to that successor 

block. 

Store 
If a successor block contains a store instruction, predict that the branch does not go to that 

successor block. 

Return 
If a successor block contains a return from subroutine instruction, predict that the branch does 

not go to that successor block. 

 



Static Branch Prediction 

• Profile-based 

1. Instrument program binary 

2. Run with representative (?) input set 

3. Recompile program 

a. Annotate branches with hint bits, or 

b. Restructure code to match predict not-taken 

• Best performance: 75-80% accuracy 



Dynamic Branch Prediction 

• Main advantages: 
– Learn branch behavior autonomously 

• No compiler analysis, heuristics, or profiling 

– Adapt to changing branch behavior 
• Program phase changes branch behavior 

• First proposed in 1979-1980 
– US Patent  #4,370,711, Branch predictor using 

random access memory, James. E. Smith 

• Continually refined since then 



Smith Predictor Hardware 

• Jim E. Smith.  A Study of Branch Prediction Strategies.  International 
Symposium on Computer Architecture, pages 135-148, May 1981 

• Widely employed: Intel Pentium, PowerPC 604, PowerPC 620, etc. 
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Two-level Branch Prediction 

• BHR adds global branch history 
– Provides more context 
– Can differentiate multiple instances of the same static branch 
– Can correlate behavior across multiple static branches 
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Two-level Prediction: Local History 

• Detailed local history can be useful 
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Local History Predictor Example 

• Loop closing 
branches 
– Must identify 

last instance 

• Local history 
dedicates PHT 
entry to each 
instance 
– ‘0111’ entry 

predicts not 
taken 
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Two-level Taxonomy 

• Based on indices for branch history and 
pattern history 
– BHR: {G,P,S}: {Global, Per-address, Set} 

– PHT: {g,p,s}: {Global, Per-address, Set} 

– 9 combinations: GAg, GAp, GAs, PAg, PAp, PAs, 
SAg, SAp and SAs 

• Tse-Yu Yeh and Yale N. Patt.  Two-Level 
Adaptive Branch Prediction.  International 
Symposium on Microarchitecture, pages 51-
61, November 1991. 



Index Sharing in Two-level Predictors 

• Use XOR function to achieve better utilization of PHT 
• Scott McFarling.  Combining Branch Predictors.  TN-36, 

Digital Equipment Corporation Western Research 
Laboratory, June 1993. 

• Used in e.g. IBM Power 4, Alpha 21264 
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Sources of Mispredictions 
• Lack of history (training time) 
• Randomized behavior 

– Usually due to randomized input data (benchmarks) 
– Surprisingly few branches depend on input data 

values 

• BHR capacity 
– Correlate to branch that already shifted out 
– E.g. loop count > BHR width 

• PHT capacity 
– Aliasing/interference 

• Positive 
• Negative 



Reducing Interference 
• Compulsory aliasing (cold miss) 

– Not important (less than 1%) 

– Only remedy is to set appropriate initial value 

– Also: beware indexing schemes with high training 
cost (e.g. very long branch history) 

• Capacity aliasing (capacity miss) 

– Increase PHT size 

• Conflict aliasing (conflict miss) 

– Change indexing scheme or partition PHT in a 
clever fashion 



Bi-Mode Predictor 

• PHT partitioned into T/NT halves 
– Selector chooses source 

• Reduces negative interference, since most entries in PHT0 tend 
towards NT, and most entries in PHT1 tend towards T 

• Used by ARM Cortex-A15 
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Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor



gskewed Predictor 

• Multiple PHT banks indexed by different hash functions 
– Conflicting branch pair unlikely to conflict in more than one PHT 

• Majority vote determines prediction 
• Used in Alpha EV8 (ultimately cancelled) 
• P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in 

Conditional Branch Predictors. ISCA-24, June 1997 
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Agree Predictor 

• Same principle as bi-mode 
• PHT records whether branch bias matches outcome 

– Exploits 70-80% static predictability 
• Used in in HP PA-8700 
• E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt.  The Agree 

Predictor: A Mechanism for Reducing Negative Branch History 
Interference. ISCA-24, June 1997. 
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PHT
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1

0
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YAGS 
Predictor 

• Based on bi-mode 
– T/NT PHTs cache 

only the exceptions 
• A. N. Eden and T. N. Mudge.  

The YAGS Branch Prediction 
Scheme.  MICRO, Dec 1998. 
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 = =
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Branch Filtering 

• Highly-biased 
branches 
– e.g. ‘11111’ 

history 
– Eliminated 

from PHT 
• P-Y Chang, M. Evers, 

and Y Patt.  
Improving Branch 
Prediction Accuracy 
by Reducing Pattern 
History Table 
Interference.  PACT, 
October 1996. 
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Branch Prediction

gshare

...
counter

direction

Branch Counting Table



Alloyed-History Predictors 

• Local history vs. global history 
• Kevin Skadron, Margaret Martonosi, and Douglas W. Clark.  Alloyed Global 

and Local Branch History: A Robust Solution to Wrong-History 
Mispredictions.  International Journal of Parallel Programming, 31(2), 
April 2003. 
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Path History 

• Sometimes T/NT history is not enough 
• Path history (PC values) can help 

if (y == 0)

    goto C;

if (y == 5)

    goto C;

if (y < 12)

    goto D;

if (y % 2)

    goto E;

History = T History = T

History = TT

A B

C

DPath ACD:

Branch Address = X

Branch History = TT

Branch Outcome = Not Taken

Path BCD:

Branch Address = X

Branch History = TT

Branch Outcome = Taken



Path-Based Branch Predictor 

• Ravi Nair.  Dynamic Path-Based Branch 
Correlation.  International Symposium on 
Microarchitecture, pages 15-23, December 1995. 
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Dynamic History Length 

• Branch history length: 
– Some prefer short history (less training time) 
– Some require longer history (complex behavior) 

• Vary history length 
– Choose through profile/compile-time hints 
– Or learn dynamically 

• References 
– Maria-Dana Tarlescu, Kevin B. Theobald, and Guang R. Gao.  Elastic History 

Buffer: A Low-Cost Method to Improve Branch Prediction Accuracy.  ICCD, 
October 1996. 

– Toni Juan, Sanji Sanjeevan, and Juan J. Navarro.  Dynamic History-Length 
Fitting: A Third Level of Adaptivity for Branch Prediction.  ISCA, June 1998. 

– Jared Stark, Marius Evers, and Yale N. Patt.  Variable Path Branch Prediction.  
ACM SIGPLAN Notices, 33(11):170-179, 1998 
 



Loop Count Predictors 

• To predict last loop iteration’s NT branch: 
– Must have length(BHR) > loop count 
– Not feasible for large loop counts 

• Instead, BHR has mode bit 
– Once history == ‘111…11’ or ‘000…00’ switch to count mode 
– Now nth entry in PHT trains to NT and predicts nth iteration as last 

one 
– Now length(BHR) > log2(loop count) is sufficient 

• Used in Intel Pentium M/Core Duo/ Core 2 Duo 

History/Count H/C 

BHR entry: 

Mode bit: 

H – history 

C – count 

“1” 



Understanding Advanced Predictors 
• Four types of history 

– Local (bimodal) history (Smith predictor) 
• Table of counters summarizes local history 
• Simple, but only effective for biased branches 

– Local outcome history (correlate with self) 
• Shift register of individual branch outcomes 
• Separate counter for each outcome history (M-F vs Sat/Sun) 

– Global outcome history (correlate with others) 
• Shift register of recent branch outcomes 
• Separate counter for each outcome history 

– Path history (overcomes CFG convergence aliasing) 
• Shift register of recent (partial) block addresses 
• Can differentiate similar global outcome histories 

• Can combine or “alloy” histories in many ways 



Understanding Advanced Predictors 

• History length 
– Short history—lower training cost 
– Long history—captures macro-level behavior 
– Variable history length predictors 

• Really long history (long loops) 
– Loop count predictors 
– Fourier transform into frequency domain 

• Kampe et. al, “The FAB Predictor…”, HPCA 2002 

• Limited capacity & interference 
– Constructive vs. destructive 
– Bi-mode, gskewed, agree, YAGS 
– Sec. 9.3.2 provides good overview 



Perceptron Branch Prediction 

[Jimenez, Lin HPCA 2001] 
• Perceptron 

– Basis in AI concept [1962] 
– Computes boolean result based on 

multiple weighted inputs 

• Adapted for branch prediction 
– xi from branch history (1 T, -1 NT) 
– wi incremented whenever branch 

outcome matches xi 
– Finds correlation between current 

branch and any subset of prior branches 

                 n 

y = w0  + ∑ xi wi 

                i=1 



Perceptrons - Implementation 

• Complex dot product must 
be computed for every 
prediction 
– Too slow 

• Arithmetic tricks, pipelining: 
– Daniel A. Jimenez and Calvin 

Lin. Neural methods for 
dynamic branch prediction. 
ACM Transactions on 
Computer Systems, 20(4):369–
397, November 2002. 

– Analog circuit implementation 
also possible 
• Amant, Jimenez, Burger, 

MICRO 2008 

• Key insight:  
– Not all branches in history are 

important (correlate) 
– Perceptron weights learn this 



Combining or Hybrid Predictors 

• Select “best” history 
• Reduce interference w/partial updates 
• Scott McFarling.  Combining Branch Predictors.  TN-36, 

Digital Equipment Corporation Western Research 
Laboratory, June 1993. 
 
 

Branch Address

P0 P1

Branch Prediction

Meta-Prediction

Branch Address

M

PApgshare

M

Branch Prediction



Branch Classification 

• Static (profile-based) branch hints select which prediction to use 
– Static T/Static NT/Dynamic 
– PowerPC y-bit overrides static BTFN 

• P-Y Chang, E Hao, TY Yeh, and Y Patt.  Branch Classification: a New Mechanism 
for Improving Branch Predictor Performance.  MICRO, Nov. 1994. 

• D Grunwald, D Lindsay, and B Zorn.  Static Methods in Hybrid Branch 
Prediction.  PACT, October 1998 
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Multi-Hybrid Predictor 

• Generalizes selector to choose from > 2 predictors 
• Marius Evers, Po-Yung Chang, and Yale N. Patt.  Using Hybrid Branch 

Predictors to Improve Branch Prediction Accuracy in the Presence of 
Context Switches.  International Symposium on Computer 
Architecture, pages 3-11, May 1996. 
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Overriding Predictors 
• Different types of history 

– E.g. Bimodal, Local, Global (BLG) 

• Different history lengths (up to hundreds of 
branches) 

• How to choose? 

– Metapredictor/selector? Expensive, slow to train 

• Tag match with most sophisticated predictor entry 

– Parallel tag check with B, L, G, long-history G 

– Choose most sophisticated prediction 

– Fancy predictors only updated when simple ones fail 

© Shen, Lipasti 38 



Current State of the Art 
• Key concepts 

– Different history type (B,L,G) 

– Variable history length 

• Some branches prefer short, others long 

• Use geometric series [Seznec, CBP-1, O-GEHL] 

– Caching only exceptions  

• Partial tag match (YAGS) 

– Confidence estimation [Jacobson et al, MICRO 1996] 

• Tagged Geometric History Length (TAGE) 
– A. Seznec, P. Michaud, “A case for (partially) tagged Geometric 

History Length Branch Prediction”, Journal of Instruction Level 
Parallelism , Feb. 2006 
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TAGE Predictor 

• Multiple tagged tables, use different global 
history lengths 

 

• Set of history lengths forms a geometric series 

 {0, 2, 4, 8, 16, 32, 64, 128, 256, …, 2048} 

 

 

40 

most of the storage  
for short history !! 



Tagged Geometric History Length (TAGE) 

• Longest matching table provides the prediction, subject to branch confidence 
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TAGE 

• Minor tweaks to basic concept still win CBP-x 

• State of the art, but… 

– Not yet implemented in a practical design 

– Very expensive hardware 

– Very energy-intensive (parallel lookups) 

– Complex update rules 

 

• Real opportunity exists for improvement 

© Shen, Lipasti 42 



Branch Target Prediction 

• Partial tags sufficient in BTB 

Branch Address

Branch ...target tag target tag target tag

  =   =   =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target

0 1



Return Address Stack 

• Speculative update causes headaches 
– On each predicted branch, checkpoint head/tail 
– Further, checkpoint stack contents since speculative pop/push 

sequence is destructive 
– Conditional call/return causes more headaches 

Bra nch Address

Size of

Instruction

BTB

Target Prediction

Return
Address

BTB

Target Prediction
is this a return?

Bra nch Address

(a) (b)



Indirect Branches 

• Tagged target cache 

– Chang et. al, Target Prediction for Indirect Jumps, ISCA 
1997 
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Indirect Branches 
• ITTAGE proposed in same 2006 paper as TAGE 

– A. Seznec, P. Michaud, “A case for (partially) tagged Geometric History Length Branch 
Prediction”, Journal of Instruction Level Parallelism , Feb. 2006 

46 
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Indirect Branches 

• CPB-3 had an indirect prediction track 
• #1: A. Seznec, A 64-Kbytes ITTAGE indirect branch predictor, MPPKI 

34.1 

• #2: Y. Ishii, T. Sawada, K. Kuroyanagi, M. Inaba, K. Hiraki, Bimode 

Cascading: Adaptive Rehashing for ITTAGE Indirect Branch Predictor, 
MPPKI 37.0 

• #3: N. Bhansali, C. Panirwala, H. Zhou, Exploring Correlation for 

Indirect Branch Prediction, MPPKI 51.6 

• #4: Daniel A. Jimenez, SNIP: Scaled Neural Indirect Predictor, MPPKI 

52.9 
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Branch Confidence Estimation 

• Limit speculation (energy), reverse predictions, guide fetch 
for multithreaded processors, choose best prediction 

• Q Jacobson, E Rotenberg, and JE Smith.  Assigning 
Confidence to Conditional Branch Predictions.  MICRO, 
December 1996. 
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High-Bandwidth Fetch: Collapsing Buffer 

• Fetch from two cache blocks, rotate, collapse past taken branches 
• Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills and Burzin A. Patel.  

Optimization of Instruction Fetch Mechanisms for High Issue Rates.  
International Symposium on Computer Architecture, June 1995. 
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High-Bandwidth Fetch: Trace Cache 

• Fold out taken branches by tracing instructions as they 
commit into a fill buffer 

• Eric Rotenberg, S. Bennett, and James E. Smith.  Trace 
Cache: A Low Latency Approach to High Bandwidth 
Instruction Fetching.  MICRO, December 1996. 
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Intel Pentium 4 Trace Cache 

• No first-level instruction cache: trace cache only 
• Trace cache BTB identifies next trace 
• Miss leads to fetch from level two cache 
• Trace cache instructions are decoded (uops) 
• Cache capacity 12k uops 

– Overwhelmed for database applications 
– Serial decoder becomes performance bottleneck 

Trace CacheTrace Cache BTB

Instruct ion Decode

Instruction TLB

and Prefetcher

Front-End BTB Level-Two

Unified Data and

Instruction Cache

Ins truction Fetch Queue
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High-Bandwidth Fetch: Loop Buffers 

• History: AMD29K Branch Target Cache 
– Don’t cache the target address; cache 4 instructions from the target itself 
– Avoid accessing I$ for first fetch group following a taken branch 
– If loop body is <= 4 instructions, effectively a loop cache 
– Room for 32/64 branch targets 

• Also common in DSP designs, under s/w control (e.g. 
Lucent) 

• Introduced in Intel Merom (Core 2 Duo) 
– Fetch buffer detects short backward branches, inhibits refetch from I$ 

• Intel Nehalem (Core i7) 
– Moved loop buffer after decoders: contains uops 

• Intel Sandybridge 
– General-purpose uop cache (not just loops) 
– 1.5K capacity 

bc 

Loop Body 
Fetch/Decode/
Dispatch Buffer 



High Frequency: Next-line Prediction 

• Embed next fetch address in instruction cache 
– Enables high-frequency back-to-back fetch 

• Brad Calder and Dirk Grunwald.  Next Cache Line and Set 
Prediction.  International Symposium on Computer 
Architecture, pages 287-296, June 1995. 

2A  B  C  D

6E  F  G  H

tag

 tag

Target Prediction Target Prediction

 =
Next line

misprediction

Tag check for
cycle 1’s lookup

Cycle 1 Cycle 2

next line
prediction

I  J  K  L

Cycle 3

 =

Tag check for
cycle 2’s  lookup

Target Pred



High Frequency: Overriding Predictors 

• Simple, fast predictor turns around every cycle 

• Smarter, slower predictor can override 

• Widely used: PowerPC 604, 620, Alpha 21264 

Small, Fast
Predictor

Instruction
Cache

Slow Overriding
Predictor

Stage 1

Stage 2

Stage 3

Predict A Predic t A

Fetch A Predict A

Fetch
Queue

Predict B Predict B

Fetch B Predic t B

Predict C Predict C

Queue A Predic t A

If slow predict agrees with fast predict, do nothing

If predictions do not match, f lush A, B, and C,

   and resta rt fetch at new predicted target

Cycle 1 Cycle 2 Cycle 3



Advanced Branch Prediction Summary 

• Control Flow Speculation 
– Branch Speculation 
– Mis-speculation Recovery 

• Branch Direction Prediction 
– Static Prediction 
– Dynamic Prediction 
– Hybrid Prediction 
– TAGE 

• Branch Target Prediction 
• High-bandwidth Fetch 
• High-Frequency Fetch 


