
Advanced Branch Prediction

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen
Updated by Mikko Lipasti

Advanced Branch Prediction

• Control Flow Speculation
– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– Dynamic Prediction
– Hybrid Prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch

Branch Speculation

• Leading Speculation
– Typically done during the Fetch stage

– Based on potential branch instruction(s) in the current fetch group

• Trailing Confirmation
– Typically done during the Branch Execute stage

– Based on the next Branch instruction to finish execution

NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)

Branch Speculation

• Leading Speculation
1. Tag speculative instructions

2. Advance branch and following instructions

3. Buffer addresses of speculated branch
instructions

• Trailing Confirmation
1. When branch resolves, remove/deallocate

speculation tag

2. Permit completion of branch and following
instructions

Branch Speculation

• Start new correct path

– Must remember the alternate (non-predicted) path

• Eliminate incorrect path

– Must ensure that the mis-speculated instructions
produce no side effects

NT T NT T NT TNT T

NT T
NT

T

NT T

(TAG 2)

(TAG 3) (TAG 1)

Mis-speculation Recovery

• Start new correct path

1. Update PC with computed branch target (if predicted
NT)

2. Update PC with sequential instruction address (if
predicted T)

3. Can begin speculation again at next branch

• Eliminate incorrect path

1. Use tag(s) to deallocate ROB entries occupied by
speculative instructions

2. Invalidate all instructions in the decode and dispatch
buffers, as well as those in reservation stations

Tracking Instructions

• Assign branch tags
– Allocated in circular order

– Instruction carries this tag throughout
processor

• Track instruction groups
– Instructions managed in groups, max. one

branch per group

– ROB structured as groups
• Leads to some inefficiency

• Simpler tracking of speculative instructions

Program Control Flow

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

to I-cache

FA (fetch address)

FABranch

Predictor

Spec. target

Prediction
 FA-mux

SFX SFX CFX FPU LSBRN

 Buffer

Branch
Predictor
Update

Static Branch Prediction

• Single-direction
– Always not-taken: Intel i486

• Backwards Taken/Forward Not Taken
– Loop-closing branches

– Used as backup in Pentium Pro, II, III, 4

• Heuristic-based:
 void * p = malloc (numBytes);

 if (p == NULL)

 errorHandlingFunction();

Static Branch Prediction

• Heuristic-based: Ball/Larus
– Thomas Ball and James R. Larus. Branch Prediction for Free. ACM

SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 300-313, May 1993.

Heuristic
Name

Description

Loop Branch If the branch target is back to the head of a loop, predict taken.

Pointer
If a branch compares a pointer with NULL, or if two pointers are compared, predict in the

direction that corresponds to the pointer being not NULL, or the two pointers not being equal.

Opcode
If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a

constant, predict in the direction that corresponds to the test evaluating to false.

Guard
If the operand of the branch instruction is a register that gets used before being redefined in the

successor block, predict that the branch goes to the successor block.

Loop Exit
If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the

branch does not go to the successor that is the loop exit.

Loop Header Predict that the successor block of a branch that is a loop header or a loop pre-header is taken.

Call
If a successor block contains a subroutine call, predict that the branch goes to that successor

block.

Store
If a successor block contains a store instruction, predict that the branch does not go to that

successor block.

Return
If a successor block contains a return from subroutine instruction, predict that the branch does

not go to that successor block.

Static Branch Prediction

• Profile-based

1. Instrument program binary

2. Run with representative (?) input set

3. Recompile program

a. Annotate branches with hint bits, or

b. Restructure code to match predict not-taken

• Best performance: 75-80% accuracy

Dynamic Branch Prediction

• Main advantages:
– Learn branch behavior autonomously

• No compiler analysis, heuristics, or profiling

– Adapt to changing branch behavior
• Program phase changes branch behavior

• First proposed in 1979-1980
– US Patent #4,370,711, Branch predictor using

random access memory, James. E. Smith

• Continually refined since then

Smith Predictor Hardware

• Jim E. Smith. A Study of Branch Prediction Strategies. International
Symposium on Computer Architecture, pages 135-148, May 1981

• Widely employed: Intel Pentium, PowerPC 604, PowerPC 620, etc.

Branch Address

Branch Prediction

m

2m k-bit counters

most significant bit

Saturating Counter

Increment/Decrement

Branch Outcome

Updated Counter Value

Two-level Branch Prediction

• BHR adds global branch history
– Provides more context
– Can differentiate multiple instances of the same static branch
– Can correlate behavior across multiple static branches

BHR
0110

PC = 01011010010101

010110

000000
000001
000010
000011

010100
010101
010110
010111

111110
111111

PHT

 1 0

1 Branch Prediction

Two-level Prediction: Local History

• Detailed local history can be useful

110

PC = 01011010010101

0101110

0000000
0000001
0000010
0000011

0101100
0101101
0101110
0101111

0111110
0111111

PHT

 0 1

0 Branch Prediction

000
001
010
011
100
101
110
111

BHT

Local History Predictor Example

• Loop closing
branches
– Must identify

last instance

• Local history
dedicates PHT
entry to each
instance
– ‘0111’ entry

predicts not
taken

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHT

Loop closing branch’s history

Two-level Taxonomy

• Based on indices for branch history and
pattern history
– BHR: {G,P,S}: {Global, Per-address, Set}

– PHT: {g,p,s}: {Global, Per-address, Set}

– 9 combinations: GAg, GAp, GAs, PAg, PAp, PAs,
SAg, SAp and SAs

• Tse-Yu Yeh and Yale N. Patt. Two-Level
Adaptive Branch Prediction. International
Symposium on Microarchitecture, pages 51-
61, November 1991.

Index Sharing in Two-level Predictors

• Use XOR function to achieve better utilization of PHT
• Scott McFarling. Combining Branch Predictors. TN-36,

Digital Equipment Corporation Western Research
Laboratory, June 1993.

• Used in e.g. IBM Power 4, Alpha 21264

1101

0110

GAp

BHR

PC

1001

1001

1010

BHR

PC

1001

gshare

BHR

PC

1101

0110

1011XOR

BHR

PC

1001

1010

0011XOR

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Sources of Mispredictions
• Lack of history (training time)
• Randomized behavior

– Usually due to randomized input data (benchmarks)
– Surprisingly few branches depend on input data

values

• BHR capacity
– Correlate to branch that already shifted out
– E.g. loop count > BHR width

• PHT capacity
– Aliasing/interference

• Positive
• Negative

Reducing Interference
• Compulsory aliasing (cold miss)

– Not important (less than 1%)

– Only remedy is to set appropriate initial value

– Also: beware indexing schemes with high training
cost (e.g. very long branch history)

• Capacity aliasing (capacity miss)

– Increase PHT size

• Conflict aliasing (conflict miss)

– Change indexing scheme or partition PHT in a
clever fashion

Bi-Mode Predictor

• PHT partitioned into T/NT halves
– Selector chooses source

• Reduces negative interference, since most entries in PHT0 tend
towards NT, and most entries in PHT1 tend towards T

• Used by ARM Cortex-A15

Bra nch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor

gskewed Predictor

• Multiple PHT banks indexed by different hash functions
– Conflicting branch pair unlikely to conflict in more than one PHT

• Majority vote determines prediction
• Used in Alpha EV8 (ultimately cancelled)
• P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in

Conditional Branch Predictors. ISCA-24, June 1997

Branch Address

Global BHR

f0

f1

f2

Ma jority

Final Prediction

PHT0 PHT1 PHT2

Agree Predictor

• Same principle as bi-mode
• PHT records whether branch bias matches outcome

– Exploits 70-80% static predictability
• Used in in HP PA-8700
• E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The Agree

Predictor: A Mechanism for Reducing Negative Branch History
Interference. ISCA-24, June 1997.

Branch Address

Global BHR

XOR

Prediction

PHT

biasing bits

1

0

1 = agree with bias bit
0 = disagree

YAGS
Predictor

• Based on bi-mode
– T/NT PHTs cache

only the exceptions
• A. N. Eden and T. N. Mudge.

The YAGS Branch Prediction
Scheme. MICRO, Dec 1998.

Branch Address

Global BHR

XOR

Partial Tag 2bC Partial Tag 2bC

 = =

0 1 0 1

0 1

Final Prediction

choice
PHT

T-cache NT-cache

T/NT-cache hit?

Branch Filtering

• Highly-biased
branches
– e.g. ‘11111’

history
– Eliminated

from PHT
• P-Y Chang, M. Evers,

and Y Patt.
Improving Branch
Prediction Accuracy
by Reducing Pattern
History Table
Interference. PACT,
October 1996.

Branch Address

Global BHR

XOR

AND

Branch Prediction

gshare

...
counter

direction

Branch Counting Table

Alloyed-History Predictors

• Local history vs. global history
• Kevin Skadron, Margaret Martonosi, and Douglas W. Clark. Alloyed Global

and Local Branch History: A Robust Solution to Wrong-History
Mispredictions. International Journal of Parallel Programming, 31(2),
April 2003.

Bra nch Address

Global BHR

Local BHT

Alloyed History
PHT

Branch Prediction

Path History

• Sometimes T/NT history is not enough
• Path history (PC values) can help

if (y == 0)

 goto C;

if (y == 5)

 goto C;

if (y < 12)

 goto D;

if (y % 2)

 goto E;

History = T History = T

History = TT

A B

C

DPath ACD:

Branch Address = X

Branch History = TT

Branch Outcome = Not Taken

Path BCD:

Branch Address = X

Branch History = TT

Branch Outcome = Taken

Path-Based Branch Predictor

• Ravi Nair. Dynamic Path-Based Branch
Correlation. International Symposium on
Microarchitecture, pages 15-23, December 1995.

Bra nch Address

Shift in address a t update

PHT

Path History

Shift Registers

Branch Prediction

Dynamic History Length

• Branch history length:
– Some prefer short history (less training time)
– Some require longer history (complex behavior)

• Vary history length
– Choose through profile/compile-time hints
– Or learn dynamically

• References
– Maria-Dana Tarlescu, Kevin B. Theobald, and Guang R. Gao. Elastic History

Buffer: A Low-Cost Method to Improve Branch Prediction Accuracy. ICCD,
October 1996.

– Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic History-Length
Fitting: A Third Level of Adaptivity for Branch Prediction. ISCA, June 1998.

– Jared Stark, Marius Evers, and Yale N. Patt. Variable Path Branch Prediction.
ACM SIGPLAN Notices, 33(11):170-179, 1998

Loop Count Predictors

• To predict last loop iteration’s NT branch:
– Must have length(BHR) > loop count
– Not feasible for large loop counts

• Instead, BHR has mode bit
– Once history == ‘111…11’ or ‘000…00’ switch to count mode
– Now nth entry in PHT trains to NT and predicts nth iteration as last

one
– Now length(BHR) > log2(loop count) is sufficient

• Used in Intel Pentium M/Core Duo/ Core 2 Duo

History/Count H/C

BHR entry:

Mode bit:

H – history

C – count

“1”

Understanding Advanced Predictors
• Four types of history

– Local (bimodal) history (Smith predictor)
• Table of counters summarizes local history
• Simple, but only effective for biased branches

– Local outcome history (correlate with self)
• Shift register of individual branch outcomes
• Separate counter for each outcome history (M-F vs Sat/Sun)

– Global outcome history (correlate with others)
• Shift register of recent branch outcomes
• Separate counter for each outcome history

– Path history (overcomes CFG convergence aliasing)
• Shift register of recent (partial) block addresses
• Can differentiate similar global outcome histories

• Can combine or “alloy” histories in many ways

Understanding Advanced Predictors

• History length
– Short history—lower training cost
– Long history—captures macro-level behavior
– Variable history length predictors

• Really long history (long loops)
– Loop count predictors
– Fourier transform into frequency domain

• Kampe et. al, “The FAB Predictor…”, HPCA 2002

• Limited capacity & interference
– Constructive vs. destructive
– Bi-mode, gskewed, agree, YAGS
– Sec. 9.3.2 provides good overview

Perceptron Branch Prediction

[Jimenez, Lin HPCA 2001]
• Perceptron

– Basis in AI concept [1962]
– Computes boolean result based on

multiple weighted inputs

• Adapted for branch prediction
– xi from branch history (1 T, -1 NT)
– wi incremented whenever branch

outcome matches xi
– Finds correlation between current

branch and any subset of prior branches

 n

y = w0 + ∑ xi wi

 i=1

Perceptrons - Implementation

• Complex dot product must
be computed for every
prediction
– Too slow

• Arithmetic tricks, pipelining:
– Daniel A. Jimenez and Calvin

Lin. Neural methods for
dynamic branch prediction.
ACM Transactions on
Computer Systems, 20(4):369–
397, November 2002.

– Analog circuit implementation
also possible
• Amant, Jimenez, Burger,

MICRO 2008

• Key insight:
– Not all branches in history are

important (correlate)
– Perceptron weights learn this

Combining or Hybrid Predictors

• Select “best” history
• Reduce interference w/partial updates
• Scott McFarling. Combining Branch Predictors. TN-36,

Digital Equipment Corporation Western Research
Laboratory, June 1993.

Branch Address

P0 P1

Branch Prediction

Meta-Prediction

Branch Address

M

PApgshare

M

Branch Prediction

Branch Classification

• Static (profile-based) branch hints select which prediction to use
– Static T/Static NT/Dynamic
– PowerPC y-bit overrides static BTFN

• P-Y Chang, E Hao, TY Yeh, and Y Patt. Branch Classification: a New Mechanism
for Improving Branch Predictor Performance. MICRO, Nov. 1994.

• D Grunwald, D Lindsay, and B Zorn. Static Methods in Hybrid Branch
Prediction. PACT, October 1998

Branch Address

P0 P1

Dynamic Branch Prediction

Meta-Prediction

M

0

1
Final Branch Prediction

Instruction Register

Static Branch Hint

Multi-Hybrid Predictor

• Generalizes selector to choose from > 2 predictors
• Marius Evers, Po-Yung Chang, and Yale N. Patt. Using Hybrid Branch

Predictors to Improve Branch Prediction Accuracy in the Presence of
Context Switches. International Symposium on Computer
Architecture, pages 3-11, May 1996.

Branch Address

=3? =3? =3?

Table of Counters

Priority Encoder

P1 P2 Pn

Final Prediction

...

Overriding Predictors
• Different types of history

– E.g. Bimodal, Local, Global (BLG)

• Different history lengths (up to hundreds of
branches)

• How to choose?

– Metapredictor/selector? Expensive, slow to train

• Tag match with most sophisticated predictor entry

– Parallel tag check with B, L, G, long-history G

– Choose most sophisticated prediction

– Fancy predictors only updated when simple ones fail

© Shen, Lipasti 38

Current State of the Art
• Key concepts

– Different history type (B,L,G)

– Variable history length

• Some branches prefer short, others long

• Use geometric series [Seznec, CBP-1, O-GEHL]

– Caching only exceptions

• Partial tag match (YAGS)

– Confidence estimation [Jacobson et al, MICRO 1996]

• Tagged Geometric History Length (TAGE)
– A. Seznec, P. Michaud, “A case for (partially) tagged Geometric

History Length Branch Prediction”, Journal of Instruction Level
Parallelism , Feb. 2006

© Shen, Lipasti 39

http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

TAGE Predictor

• Multiple tagged tables, use different global
history lengths

• Set of history lengths forms a geometric series

 {0, 2, 4, 8, 16, 32, 64, 128, 256, …, 2048}

40

most of the storage
for short history !!

Tagged Geometric History Length (TAGE)

• Longest matching table provides the prediction, subject to branch confidence

 41

hash

PC h[0 - L3]

B
a
se

P
re

d
ic

to
r

=?

pred tag

PC h[0 - L2] h[0 - L1] PC PC

prediction

GHR(h)

L1 L2 L3

- - - - - - - - -

0

=? =?

pred tag pred tag

hash hash

Hit Hit Miss

TAGE

• Minor tweaks to basic concept still win CBP-x

• State of the art, but…

– Not yet implemented in a practical design

– Very expensive hardware

– Very energy-intensive (parallel lookups)

– Complex update rules

• Real opportunity exists for improvement

© Shen, Lipasti 42

Branch Target Prediction

• Partial tags sufficient in BTB

Branch Address

Branch ...target tag target tag target tag

 = = =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target

0 1

Return Address Stack

• Speculative update causes headaches
– On each predicted branch, checkpoint head/tail
– Further, checkpoint stack contents since speculative pop/push

sequence is destructive
– Conditional call/return causes more headaches

Bra nch Address

Size of

Instruction

BTB

Target Prediction

Return
Address

BTB

Target Prediction
is this a return?

Bra nch Address

(a) (b)

Indirect Branches

• Tagged target cache

– Chang et. al, Target Prediction for Indirect Jumps, ISCA
1997

© Shen, Lipasti 45

Indirect Branches
• ITTAGE proposed in same 2006 paper as TAGE

– A. Seznec, P. Michaud, “A case for (partially) tagged Geometric History Length Branch
Prediction”, Journal of Instruction Level Parallelism , Feb. 2006

46

http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

Indirect Branches

• CPB-3 had an indirect prediction track
• #1: A. Seznec, A 64-Kbytes ITTAGE indirect branch predictor, MPPKI

34.1

• #2: Y. Ishii, T. Sawada, K. Kuroyanagi, M. Inaba, K. Hiraki, Bimode

Cascading: Adaptive Rehashing for ITTAGE Indirect Branch Predictor,
MPPKI 37.0

• #3: N. Bhansali, C. Panirwala, H. Zhou, Exploring Correlation for

Indirect Branch Prediction, MPPKI 51.6

• #4: Daniel A. Jimenez, SNIP: Scaled Neural Indirect Predictor, MPPKI

52.9

© Shen, Lipasti 47

Branch Confidence Estimation

• Limit speculation (energy), reverse predictions, guide fetch
for multithreaded processors, choose best prediction

• Q Jacobson, E Rotenberg, and JE Smith. Assigning
Confidence to Conditional Branch Predictions. MICRO,
December 1996.

Branch Address

Global BHR
XOR Table of CIRs

Reduction
Function

Confidence
Prediction

High-Bandwidth Fetch: Collapsing Buffer

• Fetch from two cache blocks, rotate, collapse past taken branches
• Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills and Burzin A. Patel.

Optimization of Instruction Fetch Mechanisms for High Issue Rates.
International Symposium on Computer Architecture, June 1995.

Branch A ddress Interleaved BTB

Cache
Bank 1

Cache
Bank 2

Two cache line addresses

 E F G H A B C D

 E F G H

 A B C D

Interchange Switch

Collapsing Circuit

Valid
Instruction
Bits

 G A B C E To Decode Stage

High-Bandwidth Fetch: Trace Cache

• Fold out taken branches by tracing instructions as they
commit into a fill buffer

• Eric Rotenberg, S. Bennett, and James E. Smith. Trace
Cache: A Low Latency Approach to High Bandwidth
Instruction Fetching. MICRO, December 1996.

A B

C

D

E F G

H I J

A B C D E F G H I J

Instruction Cache

Trace Cache

(a) (b)

Intel Pentium 4 Trace Cache

• No first-level instruction cache: trace cache only
• Trace cache BTB identifies next trace
• Miss leads to fetch from level two cache
• Trace cache instructions are decoded (uops)
• Cache capacity 12k uops

– Overwhelmed for database applications
– Serial decoder becomes performance bottleneck

Trace CacheTrace Cache BTB

Instruct ion Decode

Instruction TLB

and Prefetcher

Front-End BTB Level-Two

Unified Data and

Instruction Cache

Ins truction Fetch Queue

To renamer, execute, etc.

High-Bandwidth Fetch: Loop Buffers

• History: AMD29K Branch Target Cache
– Don’t cache the target address; cache 4 instructions from the target itself
– Avoid accessing I$ for first fetch group following a taken branch
– If loop body is <= 4 instructions, effectively a loop cache
– Room for 32/64 branch targets

• Also common in DSP designs, under s/w control (e.g.
Lucent)

• Introduced in Intel Merom (Core 2 Duo)
– Fetch buffer detects short backward branches, inhibits refetch from I$

• Intel Nehalem (Core i7)
– Moved loop buffer after decoders: contains uops

• Intel Sandybridge
– General-purpose uop cache (not just loops)
– 1.5K capacity

bc

Loop Body
Fetch/Decode/
Dispatch Buffer

High Frequency: Next-line Prediction

• Embed next fetch address in instruction cache
– Enables high-frequency back-to-back fetch

• Brad Calder and Dirk Grunwald. Next Cache Line and Set
Prediction. International Symposium on Computer
Architecture, pages 287-296, June 1995.

2A B C D

6E F G H

tag

 tag

Target Prediction Target Prediction

 =
Next line

misprediction

Tag check for
cycle 1’s lookup

Cycle 1 Cycle 2

next line
prediction

I J K L

Cycle 3

 =

Tag check for
cycle 2’s lookup

Target Pred

High Frequency: Overriding Predictors

• Simple, fast predictor turns around every cycle

• Smarter, slower predictor can override

• Widely used: PowerPC 604, 620, Alpha 21264

Small, Fast
Predictor

Instruction
Cache

Slow Overriding
Predictor

Stage 1

Stage 2

Stage 3

Predict A Predic t A

Fetch A Predict A

Fetch
Queue

Predict B Predict B

Fetch B Predic t B

Predict C Predict C

Queue A Predic t A

If slow predict agrees with fast predict, do nothing

If predictions do not match, f lush A, B, and C,

 and resta rt fetch at new predicted target

Cycle 1 Cycle 2 Cycle 3

Advanced Branch Prediction Summary

• Control Flow Speculation
– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– Dynamic Prediction
– Hybrid Prediction
– TAGE

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch

