
Register Data Flow
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Register Data Flow Techniques
• Register Data Flow

– Resolving Anti-dependences
– Resolving Output Dependences
– Resolving True Data Dependences

• Tomasulo’s Algorithm [Tomasulo, 1967]
– Modified IBM 360/91 Floating-point Unit
– Reservation Stations
– Common Data Bus
– Register Tags
– Operation of Dependency Mechanisms

The Big Picture
INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences Output Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR) (WAW)

Register Data Flow
Each ALU Instruction:

Need Availability of Fn (Structural Dependences)
Need Availability of Rj, Rk (True Data Dependences)
Need Availability of Ri (Anti-and output Dependences)

INSTRUCTION EXECUTION MODEL

Ri Fn (Rj, Rk)

Dest.
Reg.

Funct.
Unit

Source
Registers

R0
R1

Rm

FU1

FU2

FUn

Interconnect

•
•
•

•
•
•

Registers Functional
Units

“Register Transfer”

“Read”
“Write”

“Execute”

Causes of (Register) Storage Conflict
REGISTER RECYCLING

MAXIMIZE USE OF REGISTERS
MULTIPLE ASSIGNMENTS OF VALUES TO REGISTERS

OUT OF ORDER ISSUING AND COMPLETION
LOSE IMPLIED PRECEDENCE OF SEQUENTIAL CODE
LOSE 1-1 CORRESPONDENCE BETWEEN VALUES AND

REGISTERS

Ri
•
•
•

Ri

••• DEF

USE

USE

DEF•••

Ri

Ri

•
•
•

•
•
•

WAW

WAR

First instance of Ri

Second instance of Ri

Contribution to Register Recycling
COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg.
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

Reuse Same Set of Reg. in
Each Iteration

Overlapped Execution of
Different Iterations

For (k=1;k<= 10; k++)
 t += a [i] [k] * b [k] [j] ;9 $34: mul $14 $7, 40

10 addu $15, $4, $14
11 mul $24, $9, 4
12 addu $25, $15, $24
13 lw $11, 0($25)
14 mul $12, $9, 40
15 addu $13, $5, $12
16 mul $14, $8, 4
17 addu $15, $13, $14
18 lw $24, 0($15)
19 mul $25, $11, $24
20 addu $10, $10, $25
21 addu $9, $9, 1
22 ble $9, 10, $34

“Spill code”
(if not
enough
registers)

Resolving Anti-Dependences

STALL DISPATCHING
DELAY DISPATCHING OF (2)
REQUIRE RECHECKING AND REACCESSING

COPY OPERAND
COPY NOT-YET-USED OPERAND TO PREVENT BEING

OVERWRITTEN
MUST USE TAG IF ACTUAL OPERAND NOT-YET-AVAILABLE

RENAME REGISTER
HARDWARE ALLOCATION

(2) R3 R5 + 1

Must Prevent (2) from completing •
 •
 •
(1) R4 R3 + 1

before (1) is dispatched.

R3 <= …
<= R3

R3’ <= …
<= R3’

WAR
only

WAR
and
WAW

Resolving Output Dependences

© 2005 Mikko Lipasti 8

STALL DISPATCHING/ISSUING
DENOTE OUTPUT DEPENDENCE
HOLD DISPATCHING UNTIL RESOLUTION OF DEPENDENCE
ALLOW DECODING OF SUBSEQUENT INSTRUCTIONS

RENAME REGISTER
HARDWARE ALLOCATION

Must Prevent (3) from completing
before (1) completes.

(1) R3 R3 op R5

 R3

(3) R3 R5 + 1

•
•
•

•
•
•

R3 <= …
<= R3

R3’ <= …
<= R3’

Register Renaming

© 2005 Mikko Lipasti 9

Register Renaming Resolves:

 Anti-Dependences
 Output Dependences

Design of Redundant Registers:
Number:

One
Multiple

Allocation:
Fixed for Each Register
Pooled for all Regsiters

Location:
Attached to Register File

(Centralized)
Attached to functional units

(Distributed)

Architected Physical
Registers Registers

R1
R2
•
•
•
Rn

P1
P2
•
•
•
Pn

•
•
•
Pn + k

Register Renaming in the RIOS-I FPU

© 2005 Mikko Lipasti 10

FPU Register Renaming

Map table
32 x 6

32 33 34 35 36 37 38 39
Free Listhead tail

head

tail
release

Pending Target Return Queue

FAD 3 2 1 FAD 3 2 1
OP T S1 S2 S3 OP T S1 S2 S3

Incoming FPU instructions pass through a renaming table prior to decode

The 32 architectural registers are remapped to 40 physical registers

Physical register names are used within the FPU

Complex control logic maintains active register mapping

Simplified FPU Register Model

Fload R7 <= Mem[] (P32 alloc)

R7: P32

7

Free when
Fload R7
commits

Fload R7 <= Mem[] (P32 freed)
…

<= R7 (actual last use) (P32)
…

Resolving True Data Dependences

© 2005 Mikko Lipasti 11

 STALL DISPATCHING

 ADVANCE INSTRUCTIONS

 “DYNAMIC EXECUTION”

 Reservation Station + Complex Forwarding

 Out-of-order (OoO) Execution

 Try to Approach the “Data-Flow Limit”

REGISTER READ

ALU OP

REGISTER WRITE

(1) R2 R1 + 1
 •
 •
 •
(2) R3 R2
 •
 •
 •
(3) R4 R3

1) Read register(s), get “IOU” if not ready
2) Advance to reservation station
3) Wait for “IOU” to show up
4) Execute

Embedded “Data Flow” Engine

© 2005 Mikko Lipasti 12

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

“Dynamic

Completion Buffer

Branch

Execution”

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data
 being forwarded
- Issue when all
 operands ready

- Advance instructions
 to reservation stations

Tomasulo’s Algorithm [Tomasulo, 1967]

Ctrl.Ctrl. Ctrl.Ctrl.

Adder

Floating Point
Registers FLR

0

2
4
8

Control

Store

Data

1

2

3

Buffers SDB

Control

Decoder

Floating
Operand

Stack

FLOS
Control

Floating Point

Buffers FLB

1
2

3
4
5

6

Decoder

Floating Point
Registers (FLR)

Control

0

2
4
8

Control

Floating
Operand

Stack
(FLOS)

Floating Point

Buffers (FLB)

1

2

3

4

5
6

Store

Data

1

2

3

Buffers (SDB)

Control

Storage Bus

Ctrl.

Adder

Instruction Unit

To Storage

Result

Sink Source

AdderMultiply/Divide

Result

Sink Source

•

•

Floating Point
Register

(FLR) Bus

Floating Point
Buffer

(FLB) Bus

• Result Bus

Mikko Lipasti-University of Wisconsin 13

IBM 360/91 FPU
• Multiple functional units (FU’s)

– Floating-point add
– Floating-point multiply/divide

• Three register files (pseudo reg-reg machine in floating-point unit)
– (4) floating-point registers (FLR)
– (6) floating-point buffers (FLB)
– (3) store data buffers (SDB)

• Out of order instruction execution:
– After decode the instruction unit passes all floating point instructions (in order) to

the floating-point operation stack (FLOS) [actually a queue, not a stack]
– In the floating point unit, instructions are then further decoded and issued from the

FLOS to the two FU’s
• Variable operation latencies:

– Floating-point add: 2 cycles
– Floating-point multiply: 3 cycles
– Floating-point divide: 12 cycles

• Goal: achieve concurrent execution of multiple floating-point instructions, in
addition to achieving one instruction per cycle in instruction pipeline

Dependence Mechanisms
Two Address IBM 360 Instruction Format:

R1 <-- R1 op R2
Major dependence mechanisms:
• Structural (FU) dependence = > virtual FU’s

– Reservation stations
• True dependence = > pseudo operands + result forwarding

– Register tags
– Reservation stations
– Common data bus (CDB)

• Anti-dependence = > operand copying
– Reservation stations

• Output dependence = > register renaming + result forwarding
– Register tags
– Reservation stations
– Common data bus (CDB)

© 2005 Mikko Lipasti 15

IBM 360/91 FPU

© 2005 Mikko Lipasti 16

Adder

Floating Point

Registers FLR

0

2

4

8

Store

Data

1

2

3

Buffers SDB

Control

Decoder

Floating

Operand

Stack

FLOS
Control

Floating Point

Buffers FLB

1

2

3

4

5

6

Decoder

Floating Point
Registers (FLR)

Control

0
2
4
8

Floating

Operand
 Stack

Floating Point
Buffers (FLB)

1
2
3
4
5
6

Store
Data

1
2
3

Buffers (SDB)

Control

Storage Bus Instruction Unit

Result

Multiply/Divide

•

Common Data Bus (CDB)

 Point

Busy
Bits

Adder

FLB Bus
FLR Bus

CDB ••

•

•

Tags

Tags

Sink TagTag Source Ctrl.
Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.
Sink TagTag Source Ctrl.
Sink TagTag Source Ctrl.

•

Result

(FLOS)

Reservation Stations

• Used to collect operands or pseudo operands (tags).
• Associate more than one set of buffering registers (control, source,

sink) with each FU, = > virtual FU’s.
• Add unit: three reservation stations
• Multiply/divide unit: two reservation stations

Tag Sink Tag Source

0 implies
valid data

Source value 0 implies
valid data

Source value

© 2005 Mikko Lipasti

17

Common Data Bus (CDB)
• CDB is fed by all units that can alter a register (or supply

register values) and it feeds all units which can have a
register as an operand.

• Sources of CDB:
– Floating-point buffers (FLB)
– Two FU’s (add unit and the multiply/divide unit)
– 6 FLB + 3 addRS + 2 muldivRS = 11 unique sources
– 3 physical sources (FLB, adder, mul/div)

• Destinations of CDB:
– Reservation stations
– Floating-point registers (FLR)
– Store data buffers (SDB)
– (5 RS x 2) + 4 FLR + 3 SDB : CDB has 17 destinations

• Circuit design very challenging
– 3 physical sources must arbitrate for access to CDB
– Tag + data must be driven to 17 destinations

© 2005 Mikko Lipasti 18

Register Tags

• Every source of a register value must be uniquely identified by its
own tag value.
– (6) FLB’s
– (5) reservation stations (3 with add unit, 2 with multiply/divide unit)

= = > 4-bit tag is needed to identify the 11 potential sources

• Every destination of a register value must carry a tag field.
– (5) “sink” entries of the reservation stations
– (5) “source” entries of the reservation stations
– (4) FLR’s
– (3) SDB’s

= = > a total of 17 tag fields are needed (i.e. 17 places that need tags)

© 2005 Mikko Lipasti 19

Operation of Dependence Mechanisms
1. Structural (FU) dependence = > virtual FU’s

– FLOS can hold and decode up to 8 instructions.
– Instructions are dispatched to the 5 reservation stations (virtual FU’s) even

though there are only two physical FU’s.
– Hence, structural dependence does not stall dispatching.

2. True dependence = > pseudo operands + result forwarding
– If an operand is available in FLR, it is copied to a res. station entry.
– If an operand is not available (i.e. there is pending write), then a tag is copied

to the reservation station entry instead. This tag identifies the source of the
pending write. This instruction then waits in its reservation station for the true
dependence to be resolved.

– When the operand is finally produced by the source (ID of source = tag value),
this source unit asserts its ID, i.e. its tag value, on the CDB followed by
broadcasting of the operand on the CDB.

– All the reservation station entries and the FLR entries and SDB entries carrying
this tag value in their tag fields will detect a match of tag values and latch in
the broadcasted operand from the CDB.

– Hence, true dependence does not block subsequent independent instructions
and does not stall a physical FU. Forwarding also minimizes delay due to true
dependence.

© 2005 Mikko Lipasti 20

Example 1
Cycle #1 DISPATCHED INSTRUCTION(S): i

ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data
i 1 0 6.0 0 10.0 4 0 6.0

2 5 2 x 1 3.5
3 Mult/Div 4 10.0

Adder i 8 7.8

Cycle #2 DISPATCHED INSTRUCTION(S): j
ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data

i 1 0 6.0 0 10.0 4 0 6.0
j 2 0 6.0 1 5 2 1

3 Mult/Div 4 10.0
Adder i 8 x 2 7.8

Cycle #3 DISPATCHED INSTRUCTION(S):
ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data

1 4 0 6.0
j 2 0 6.0 0 16.0 5 2 16.0

3 Mult/Div 4 10.0
Adder j 8 x 2 7.8

© 2005 Mikko Lipasti

i: R2 <= R0 + R4
j: R8 <= R0 + R2 (RAW on R2)

16.0 16.0x

Operation of Dependence Mechanisms

3. Anti-dependence = > operand copying

– If an operand is available in FLR, it is copied to a reservation station
entry.

– By copying this operand to the reservation station, all anti-
dependences due to future writes to this same register are
resolved.

– Hence, the reading of an operand is not delayed, possibly due to
other dependences, and subsequent writes are also not delayed.

© 2005 Mikko Lipasti 22

Example 2
Cycle #1 DISPATCHED INSTRUCTION(S): i, j

ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data
1 i 4 0 6.0 0 7.8 0 x 5 6.0
2 j 5 4 0 3.5 2 3.5
3 Mult/Div i 4 x 4 10.0

Adder 8 7.8

Cycle #2 DISPATCHED INSTRUCTION(S): k
ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data

k 1 0 3.5 0 7.8 i 4 0 6.0 0 7.8 0 x 5 6.0
2 j 5 4 0 3.5 2 x 1 3.5
3 Mult/Div i 4 x 4 10.0

Adder k 8 7.8

Cycle #3 DISPATCHED INSTRUCTION(S):
ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data

k 1 0 3.5 0 7.8 i 4 0 6.0 0 7.8 0 x 5 6.0
2 j 5 4 0 3.5 2 x 1 3.5
3 Mult/Div i 4 x 4 10.0

Adder k 8 7.8

© 2005 Mikko Lipasti

i: R4 <= R0 * R8
j: R0 <= R4 * R2 (RAW on R4)
k: R2 <= R2 + R8 (WAR on R2)

Operation of Dependence Mechanisms

3. Output dependence = > register renaming + result forwarding

– If a register is waiting for a pending write, its tag field will contain the ID, or
tag value, of the source for that pending write.

– When that source eventually produces the result, that result will be written
into the register via the CDB.

– It is possible that prior to the completion of the pending write, another
instruction can come along and also has that same register as its destination
register.

– If this occurs, the operands (or pseudo operands) needed by this instruction
are still copied to an available reservation station. In addition, the tag field
of the destination register of this instruction is updated with the ID of this
new reservation station, i.e. the old tag value is overwritten. This will
ensure that the said register will get the latest value, i.e. the late completing
earlier write cannot overwrite a later write.

– Hence, the output dependence is resolved without stalling a physical
functional unit, not requiring additional buffers to ensure sequential write
back to the register file.

© 2005 Mikko Lipasti 24

Example 3
Cycle #1 DISPATCHED INSTRUCTION(S): i, j

ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data
j 1 0 6.0 4 i 4 0 6.0 0 7.8 0 6.0

2 5 2 x 1 3.5
3 Mult/Div i 4 x 4 10.0

Adder 8 7.8

Cycle #2 DISPATCHED INSTRUCTION(S): k, l
ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data

j 1 0 6.0 4 i 4 0 6.0 0 7.8 0 6.0
k 2 0 6.0 0 7.8 l 5 2 0 7.8 2 x 1 3.5

3 Mult/Div i 4 x 2 10.0
Adder k 8 x 5 7.8

Cycle #3 DISPATCHED INSTRUCTION(S):
ID Tag Sink Tag Source ID Tag Sink Tag Source Busy Tag Data

j 1 0 6.0 4 i 4 0 6.0 0 7.8 0 6.0
k 2 0 6.0 0 7.8 l 5 2 0 7.8 2 x 1 3.5

3 Mult/Div i 4 x 2
Adder k 8 7.8

© 2005 Mikko Lipasti

i: R4 <= R0 * R8
j: R2 <= R0 + R4 (RAW on R4)
k: R4 <= R0 + R8 (WAW on R4)
l: R8 <= R4 * R8 (RAW on R4)

What if j causes FP overflow exception?
- where is R4?
- it is lost => imprecise exceptions!

13.8

Summary of Tomasulo’s Algorithm
• Supports out of order execution of instructions.

• Resolves dependences dynamically using hardware.

• Attempts to delay the resolution of dependencies as late as possible.

• Structural dependence does not stall issuing; virtual FU’s in the form of
reservation stations are used.

• Output dependence does not stall issuing; copying of old tag to
reservation station and updating of tag field of the register with
pending write with the new tag.

• True dependence with a pending write operand does not stall the
reading of operands; pseudo operand (tag) is copied to reservation
station.

• Anti-dependence does not stall write back; earlier copying of operand
awaiting read to the reservation station.

• Can support sequence of multiple output dependences.

• Forwarding from FU’s to reservation stations bypasses the register file.

Tomasulo vs. Modern OOO
IBM 360/91 Modern

Width Peak IPC = 1 4+
Structural hazards 2 FPU

Single CDB
Many FU
Many busses

Anti-dependences Operand copy Reg. Renaming
Output
dependences

Renamed reg. tag Reg. renaming

True dependences Tag-based forw. Tag-based forw.
Exceptions Imprecise Precise (ROB)
Implementation 3 x 66” x 15” x 78”

60ns cycle time
11-12 gate delays
per pipe stage
>$1 million

< 1 chip
300ps
< $100

Example 4

i: R4 <-- R0 + R8

j: R2 <-- R0 * R4

k: R4 <-- R4 + R8

l: R8 <-- R4 * R2

Example 4

(2)

(3)

(2)

(3)

(10)

(2)

(3) (2)

(3)

(8)

i

j

k

l

i

j k

l

Can Tomasulo’s algorithm reach dataflow limit of 8?

Example 4

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #1

CYCLE #2

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #3

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

Example 4
CYCLE #4

CYCLE #5

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #6

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

“Dataflow Engine” for Dynamic Execution
Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

registers

Instruction Processing Steps
•DISPATCH:

•Read operands from Register File (RF) and/or Rename Buffers (RRB)

•Rename destination register and allocate RRB entry

•Allocate Reorder Buffer (ROB) entry

•Advance instruction to appropriate Reservation Station (RS)

•EXECUTE:

•RS entry monitors bus for register Tag(s) to latch in pending operand(s)

•When all operands ready, issue instruction into Functional Unit (FU) and
deallocate RS entry (no further stalling in execution pipe)

•When execution finishes, broadcast result to waiting RS entries, RRB entry, and
ROB entry

•COMPLETE:

•Update architected register from RRB entry, deallocate RRB entry, and if it is a
store instruction, advance it to Store Buffer

•Deallocate ROB entry and instruction is considered architecturally completed

Reservation Station Implementation

• Reservation Stations: distributed vs. centralized
– Wakeup: benefit to partition across data types
– Select: much easier with partitioned scheme

• Select 1 of n/4 vs. 4 of n

Reorder Buffer

Reservation
Stations

or
Issue Queue

In Order In Order

Issue
Out of
Order

Finish
Out of
Order

Reorder Buffer Implementation

• Merge RS and ROB => Register Update Unit (RUU)
– Inefficient, hard to scale
– Perhaps of interest only to historians

Reorder Buffer

Register
Update

Unit

In Order In Order

Issue
Out of
Order

Finish
Out of
Order

Scheduling loop
• Wakeup dominated by wire delay

– More compact RS => higher frequency

== == OROR

readyL tagL readyRtagR

== == OROR

readyL tagL readyRtagR

tag W tag 1…

… …

ready - request
request n

grant n

grant 0
request 0

grant 1
request 1

……

selected

issue
to FU

broadcast the tag
of the selected inst

Select logic Wakeup logic

scheduling
loop

Mikko Lipasti-University of Wisconsin 36

Scheduler Designs
• Data-Capture Scheduler

– keep the most recent
register value in reservation
stations

– Data forwarding and
wakeup are combined

Register
File

Data-captured
scheduling window
(reservation station)

Functional Units

Fo
rw

ar
di

ng
an

d
w

ak
eu

p R
eg

is
te

r u
pd

at
e

Mikko Lipasti-University of Wisconsin 37

Scheduler Designs
• Non-Data-Capture

Scheduler
– keep the most recent

register value in RF
(physical registers)

– Data forwarding and
wakeup are decoupled

Register
File

Non-data-capture
scheduling

window

Functional Units

Fo
rw

ar
di

ng

w
ak

eu
p

 Complexity benefits
 smaller RS / faster wakeup path

Mikko Lipasti-University of Wisconsin 38

Mapping to pipeline stages
• AMD K7 (data-capture)

 Pentium 4 (non-data-capture)

Data

Data

Data /
wakeup

wakeup

Mikko Lipasti-University of Wisconsin 39

Scheduling atomicity
& non-data-capture scheduler

Fetch Decode Sched
/Exe Writeback Commit

Atomic Sched/Exe

Fetch Decode Schedule Dispatch RF Exe Writeback Commit

wakeup/
select

Fetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback CommitFetch Decode Schedule Dispatch RF Exe Writeback Commit

Wakeup
/Select

Fetch Decode Schedule Dispatch RF Exe Writeback Commit

Wakeup
/Select

• Multi-cycle scheduling loop

• Scheduling atomicity is not maintained
– Separated by extra pipeline stages (Disp, RF)
– Unable to issue dependent instructions consecutively

 solution: speculative scheduling

Mikko Lipasti-University of Wisconsin 40

Speculative Scheduling
• Speculatively wakeup dependent instructions even before the parent

instruction starts execution
– Keep the scheduling loop within a single clock cycle

• But, nobody knows what will happen in the future

• Source of uncertainty in instruction scheduling: loads
– Cache hit / miss
– Store-to-load aliasing
 eventually affects timing decisions

• Scheduler assumes that all types of instructions have pre-determined
fixed latencies
– Load instructions are assumed to have a common case (over 90% in general)

$DL1 hit latency
– If incorrect, subsequent (dependent) instructions are replayed

Mikko Lipasti-University of Wisconsin 41

Speculative Scheduling
• Overview

Spec wakeup
/select

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Spec wakeup
/select

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

Re-schedule
when latency mispredicted

Latency Changed!!

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Re-schedule
when latency mispredicted

Invalid input value

Speculatively issued instructions

Fetch Decode Schedule Dispatch RF Exe Writeback
/Recover Commit

Speculatively issued instructions

 Unlike the original Tomasulo’s algorithm
 Instructions are scheduled BEFORE actual execution occurs
 Assumes instructions have pre-determined fixed latencies

 ALU operations: fixed latency
 Load operations: assumes $DL1 latency (common case)

Mikko Lipasti-University of Wisconsin 42

Selection Logic
• Single FU of each type: arbiter

– Choose 1:n ready instructions
– Fairly straightforward logic

• Multiple FUs of a given type: allocator
– Choose m:n ready instructions
– Must solve classic “matching” problem

• Using e.g. iSLIP [Mckeown, IEEE Trans. On Networking, 1999]

– Not feasible in cycle-time critical loop
– Instead: instructions bound to FU when inserted

Mikko Lipasti-University of Wisconsin 43

Selection Logic
• Arbiter must guarantee forward progress

– Select oldest instruction first
– Algorithm: mask remembers who was waiting

when you arrived, defer to them

Mikko Lipasti-University of Wisconsin 44

0

Entry

0

Valid

0000

Mask

1 0 0000

2 0 0000

3 0 00001

1101

1 0000

0100

1

1 0101

1) Entries 2 & 3 wake up: 0011
2: |(0011 & 1101) => true
3: |(0011 & 0100) => false

2) 3 is selected, flash clears col 3

0 0000

0100

1100

3) 2 is selected in next cycle, etc.

Reorder Buffer Implementation

• Reorder Buffer
– “Bookkeeping,” physically distributed, many read/write ports

– Can be instruction-grained, or block-grained (4-5 ops)

Mikko Lipasti-University of Wisconsin 45

Register File Speculation & Recovery
• History file (similar to checkpointing)

– Copy previous value from ARF to HF at dispatch

– Use HF to reconstruct precise state if needed

• Future file: separate ARF & RRF (lecture notes, PPC 620,
Pentium Pro, Core i7, AMD K8, ARM A15)
– Copy committed value from RRF to ARF
– Update rename table mapping

• Physical Register File: merged ARF & RRF (MIPS R10000 ,
Pentium 4, Alpha 21264, Power 4-7, Nehalem,
Sandybridge, Bulldozer, Bobcat)
– No copy; simpler datapath (operand always in PRF)
– Simply “commit” rename table mapping as branches resolve

Mikko Lipasti-University of Wisconsin 46

Register File Alternatives

• Rename register organization
– Future file (future updates buffered, later committed)

• Rename register file
– History file (old versions buffered, later discarded)
– Merged (single physical register file)

Register
Lifetime Status

Duration
(cycles)

Result stored where?

Future File History File Phys. RF

Dispatch Unavail ≥ 1 N/A N/A N/A

Finish
execution

Speculative ≥ 0 FF ARF PRF

Commit Committed ≥ 0 ARF ARF PRF

Next def.
Dispatched

Committed ≥ 1 ARF HF PRF

Next def.
Committed

Discarded ≥ 0 Overwritten Discarded Reclaimed

Mikko Lipasti-University of Wisconsin 47

ARF vs. PRF

Architected Register File -style

RAT

ARF ROB

RS

Payload RAM

Bypass

ALU

 We showed that PRF is better [ISLPED 07] – nearly everyone now agrees!
 P6 thru Core 2 Duo (Merom): ARF
 Pentium4/Nehalem/Sandybridge, AMD Bulldozer & Bobcat: PRF
 Recent regression: Intel Silvermont, Cortex A15 use ARF … design team?

RAT

ROB

RS

PRF

Bypass

ALU

Physical Register File - style

Mikko Lipasti-University of Wisconsin 48

Misprediction Recovery

 Branch mispredicts, exceptions: must reclaim allocated resources
 Load queue, store queue/color, branch color, ROB entry, rename register

 Can reclaim implicitly
 Tag broadcast: all entities match & release
 Too expensive for physical register file (PRF)

 Or reclaim explicitly
 Walk through ROB which contains pointers
 Follow pointers to release resources

 Also, recover rename mappings
 Read previous mappings (pending release) and repair map table

Valid PC Dest
PR

Prev
PR

Src1 Src2 Imm/
target

Issued Executed Exception T/NT
Pred

1 x400C P13 P17 P25 n/a X80 Y Y N

1 X4008 P14 P22 P31 P5 Y N N

1 X4004 x4020 NT

Mikko Lipasti-University of Wisconsin 49

Rename Table Implementation

• MAP checkpointing
– Performance optimization

• Recovery from branches, exceptions

– Checkpoint granularity
• Every instruction (costly)
• Every branch, play back ROB to get to exception

boundary

• RAM vs CAM Map Table

Mikko Lipasti-University of Wisconsin 50

RAM Map Table

• Just a lookup table
Checkpoint size: n (# arch reg) x log2(phys reg)

Mikko Lipasti-University of Wisconsin 51

CAM Map Table

• CAM search for mappings
– # rows == number of physical registers
– Checkpoint only the valid bit column

• Used in Alpha 21264
Mikko Lipasti-University of Wisconsin 52

Summary
• Register dependences

– True dependences
– Antidependences
– Output dependences

• Register Renaming
• Tomasulo’s Algorithm
• Reservation Station Implementation
• Reorder Buffer Implementation
• Register File Implementation

– History file
– Future file
– Physical register file

• Rename Table Implementation

	Register Data Flow�ECE/CS 752 Fall 2017
	Register Data Flow Techniques
	The Big Picture
	Register Data Flow
	Causes of (Register) Storage Conflict
	Contribution to Register Recycling
	Resolving Anti-Dependences
	Resolving Output Dependences
	Register Renaming
	Register Renaming in the RIOS-I FPU
	Resolving True Data Dependences
	Embedded “Data Flow” Engine
	Tomasulo’s Algorithm [Tomasulo, 1967]
	IBM 360/91 FPU
	Dependence Mechanisms
	IBM 360/91 FPU
	Reservation Stations
	Common Data Bus (CDB)
	Register Tags
	Operation of Dependence Mechanisms
	Example 1
	Operation of Dependence Mechanisms
	Example 2
	Operation of Dependence Mechanisms
	Example 3
	Summary of Tomasulo’s Algorithm
	Tomasulo vs. Modern OOO
	Example 4
	Example 4
	Example 4
	Example 4
	“Dataflow Engine” for Dynamic Execution
	Instruction Processing Steps
	Reservation Station Implementation
	Reorder Buffer Implementation
	Scheduling loop
	Scheduler Designs
	Scheduler Designs
	Mapping to pipeline stages
	Scheduling atomicity �& non-data-capture scheduler
	Speculative Scheduling
	Speculative Scheduling
	Selection Logic
	Selection Logic
	Reorder Buffer Implementation
	Register File Speculation & Recovery
	Register File Alternatives
	ARF vs. PRF
	Misprediction Recovery
	Rename Table Implementation
	RAM Map Table
	CAM Map Table
	Summary

