
Branch Prediction

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen
Updated by Mikko Lipasti

Lecture Overview

• Program control flow
– Implicit sequential control flow
– Disruptions of sequential control flow

• Branch Prediction
– Branch instruction processing
– Branch instruction speculation

• Key historical studies on branch prediction
– UCB Study [Lee and Smith, 1984]
– IBM Study [Nair, 1992]

• Branch prediction implementation (PPC 604)
– BTAC and BHT design
– Fetch Address Generation

Program Control Flow

• Implicit Sequential Control Flow
– Static Program Representation

• Control Flow Graph (CFG)
• Nodes = basic blocks
• Edges = Control flow transfers

– Physical Program Layout
• Mapping of CFG to linear program memory
• Implied sequential control flow

– Dynamic Program Execution
• Traversal of the CFG nodes and edges (e.g. loops)
• Traversal dictated by branch conditions

– Dynamic Control Flow
• Deviates from sequential control flow
• Disrupts sequential fetching
• Can stall IF stage and reduce I-fetch bandwidth

Program Control Flow

• Dynamic traversal of
static CFG

• Mapping CFG to linear
memory

Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish

Completion Buffer

Branch

Branch Prediction

• Target address generation Target Speculation
– Access register:

• PC, General purpose register, Link register

– Perform calculation:
• +/- offset, autoincrement, autodecrement

• Condition resolution Condition speculation
– Access register:

• Condition code register, General purpose register

– Perform calculation:
• Comparison of data register(s)

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)

PC(seq.)Branch
Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

Branch/Jump Target Prediction

• Branch Target Buffer: small cache in fetch stage
– Previously executed branches, address, taken history, target(s)

• Fetch stage compares current FA against BTB
– If match, use prediction
– If predict taken, use BTB target

• When branch executes, BTB is updated
• Optimization:

– Size of BTB: increases hit rate
– Prediction algorithm: increase accuracy of prediction

Branch inst. Information Branch target
address for predict. address (most recent)

0x0348 0101 (NTNT) 0x0612

Branch Prediction: Condition Speculation

1. Biased Not Taken
– Hardware prediction
– Does not affect ISA
– Not effective for loops

2. Software Prediction
– Extra bit in each branch instruction

• Set to 0 for not taken
• Set to 1 for taken

– Bit set by compiler or user; can use profiling
– Static prediction, same behavior every time

3. Prediction based on branch offset
– Positive offset: predict not taken
– Negative offset: predict taken

4. Prediction based on dynamic history

UCB Study [Lee and Smith, 1984]

• Benchmarks used

– 26 programs (IBM 370, DEC PDP-11, CDC 6400)

– 6 workloads (4 IBM, 1 DEC, 1 CDC)

– Used trace-driven simulation

• Branch types

– Unconditional: always taken or always not taken

– Subroutine call: always taken

– Loop control: usually taken

– Decision: either way, if-then-else

– Computed goto: always taken, with changing target

– Supervisor call: always taken

– Execute: always taken (IBM 370)

IBM1 IBM2 IBM3 IBM4 DEC CDC Avg

T 0.640 0.657 0.704 0.540 0.738 0.778 0.676

NT 0.360 0.343 0.296 0.460 0.262 0.222 0.324

IBM1: compiler
IBM2: cobol (business app)

IBM3: scientific
IBM4: supervisor (OS)

Branch Prediction Function
• Prediction function F(X1, X2, …)

– X1 – opcode type

– X2 – history

• Prediction effectiveness based on opcode only, or history

IBM1 IBM2 IBM3 IBM4 DEC CDC

Opcode only 66 69 71 55 80 78

History 0 64 64 70 54 74 78

History 1 92 95 87 80 97 82

History 2 93 97 91 83 98 91

History 3 94 97 91 84 98 94

History 4 95 97 92 84 98 95

History 5 95 97 92 84 98 96

Example Prediction Algorithm

• Hardware table remembers last 2 branch outcomes
– History of past several branches encoded by FSM
– Current state used to generate prediction

• Results:

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

Branch inst. Information Branch target
address for predict. address

Workload IBM1 IBM2 IBM3 IBM4 DEC CDC

Accuracy 93 97 91 83 98 91

Other Prediction Algorithms

• Combining prediction accuracy with BTB hit rate
(86.5% for 128 sets of 4 entries each), branch
prediction can provide the net prediction
accuracy of approximately 80%. This implies a 5-
20% performance enhancement.

N

T
N

N

T

TN
T

n?

T

t

T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

n
n

IBM Study [Nair, 1992]

• Branch processing on the IBM RS/6000
– Separate branch functional unit

– Five different branch types
• b: unconditional branch

• bl: branch and link (subroutine calls)

• bc: conditional branch

• bcr: conditional branch using link register (returns)

• bcc: conditional branch using count register

– Overlap of branch instructions with other instructions
• Zero cycle branches

– Two causes for branch stalls
• Unresolved conditions

• Branches downstream too close to unresolved branches

Branch Instruction Distribution

% of each branch type % bc with penalty
cycles

Benchmark b bl bc bcr

bcc

3 cyc 2 cyc 1 cyc

spice2g6 7.86 0.30 12.58 0.32 13.82 3.12 0.76

doduc 1.00 0.94 8.22 1.01 10.14 1.76 2.02

matrix300 0.00 0.00 14.50 0.00 0.68 0.22 0.20

tomcatv 0.00 0.00 6.10 0.00 0.24 0.02 0.01

gcc 2.30 1.32 15.50 1.81 22.46 9.48 4.85

espresso 3.61 0.58 19.85 0.68 37.37 1.77 0.31

li 2.41 1.92 14.36 1.91 31.55 3.44 1.37

eqntott 0.91 0.47 32.87 0.51 5.01 11.01 0.80

Exhaustive Search for Optimal 2-bit Predictor
• There are 220 possible state machines of 2-bit predictors

• Some machines are uninteresting, pruning them out reduces the
number of state machines to 5248

• For each benchmark, determine prediction accuracy for all the
predictor state machines

• Find optimal 2-bit predictor for each application

Number of History Bits Needed

• Branch history table size: Direct-mapped array of 2k entries
• Some programs, like gcc, have over 7000 conditional branches
• In collisions, multiple branches share the same predictor

– Constructive and destructive interference

– Destructive interference

• Marginal gains beyond 1K entries (for these programs)

Prediction Accuracy (Overall CPI Overhead)

Benchmark 3 bit 2 bit 1 bit 0 bit

spice2g6 97.0 (0.009) 97.0 (0.009) 96.2 (0.013) 76.6 (0.031)

doduc 94.2 (0.003) 94.3 (0.003) 90.2 (0.004) 69.2 (0.022)

gcc 89.7 (0.025) 89.1 (0.026) 86.0 (0.033) 50.0 (0.128)

espresso 89.5 (0.045) 89.1 (0.047) 87.2 (0.054) 58.5 (0.176)

li 88.3 (0.042) 86.8 (0.048) 82.5 (0.063) 62.4 (0.142)

eqntott 89.3 (0.028) 87.2 (0.033) 82.9 (0.046) 78.4 (0.049)

Branch Prediction Implementation (PPC 604)

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

to I-cache

FA (fetch address)

FABranch

Predictor

Spec. target

Prediction
 FA-mux

SFX SFX CFX FPU LSBRN

 Buffer

Branch
Predictor
Update

BTAC and BHT Design (PPC 604)

Decode Buffer

Dispatch Buffer

Decode

Reservation

Dispatch

Stations

Issue

Execute

Finish Completion

Branch

FA

Branch Target
Address Cache

 F
A

-m
u

x

Branch History
Table (BHT)

BTAC

BHT

SFX SFX CFX FPU LSBRN

 Buffer

(BTAC)

I-cache

update

update

FA FA

F
A

R

+4

BTAC prediction

BHT prediction

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
 history based prediction
- overrides BTAC prediction

BTAC and BHT Design (PPC 604)

