
Superscalar Organization
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

CPU, circa 1986

• MIPS R2000, ~“most elegant pipeline ever devised” J. Larus
• Enablers: RISC ISA, pipelining, on-chip cache memory

Mikko Lipasti-University of Wisconsin 2

Stage Phase Function performed

IF φ1 Translate virtual instr. addr. using TLB

φ2 Access I-cache

RD φ1 Return instruction from I-cache, check tags &
parity

φ2 Read RF; if branch, generate target

ALU φ1 Start ALU op; if branch, check condition

φ2 Finish ALU op; if ld/st, translate addr

MEM φ1 Access D-cache

φ2 Return data from D-cache, check tags & parity

WB φ1 Write RF

φ2
Source: https://imgtec.com

Iron Law

Processor Performance = ---------------
Time

Program

Architecture --> Implementation --> Realization
Compiler Designer Processor Designer Chip Designer

Instructions Cycles
Program Instruction

Time
Cycle

(code size)

= X X

(CPI) (cycle time)

Mikko Lipasti -- University of Wisconsin 3

Limitations of Scalar Pipelines
• Scalar upper bound on throughput

– IPC <= 1 or CPI >= 1

• Rigid pipeline stall policy
– One stalled instruction stalls entire pipeline

• Limited hardware parallelism
– Only temporal (across pipeline stages)

Mikko Lipasti-University of Wisconsin 4

Superscalar Proposal

• Fetch/execute multiple instructions per cycle

• Decouple stages so stalls don’t propagate

• Exploit instruction-level parallelism (ILP)

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58
Sohi and Vajapeyam [1987] 1.81
Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)
Tjaden and Flynn [1973] 1.96
Uht [1986] 2.00
Smith et al. [1989] 2.00
Jouppi and Wall [1988] 2.40
Johnson [1991] 2.50
Acosta et al. [1986] 2.79
Wedig [1982] 3.00
Butler et al. [1991] 5.8
Melvin and Patt [1991] 6
Wall [1991] 7 (Jouppi disagreed)
Kuck et al. [1972] 8
Riseman and Foster [1972] 51 (no control dependences)
Nicolau and Fisher [1984] 90 (Fisher’s optimism)

High-IPC Processor Evolution

Mikko Lipasti-University of Wisconsin 7

Desktop/Workstation Market

Scalar RISC
Pipeline

1980s:
MIPS
SPARC
Intel 486

2-4 Issue
In-order

Early 1990s:
IBM RIOS-I
Intel Pentium

Limited Out-
of-Order

Mid 1990s:
PowerPC 604
Intel P6

Large ROB
Out-of-Order
2000s:
DEC Alpha 21264
IBM Power4/5
AMD K8

1985 – 2005: 20 years, 100x frequency

Mobile Market

Scalar RISC
Pipeline

2002: ARM11

2-4 Issue
In-order

2005: Cortex A8

Limited Out-
of-Order

2009: Cortex A9

Large ROB
Out-of-Order
2011: Cortex A15

2002 – 2011: 10 years, 10x frequency

What Does a High-IPC CPU Do?

Mikko Lipasti-University of Wisconsin 8

1. Fetch and decode
2. Construct data

dependence
graph (DDG)

3. Evaluate DDG
4. Commit changes

to program state
Source: [Palacharla, Jouppi, Smith, 1996]

A Typical High-IPC Processor

Mikko Lipasti-University of Wisconsin 9

1. Fetch and Decode

2. Construct DDG

3. Evaluate DDG

4. Commit results

Power Consumption

• Actual computation overwhelmed by
overhead of aggressive execution pipeline

Mikko Lipasti-University of Wisconsin 10

ARM Cortex A15 [Source: NVIDIA] Core i7 [Source: Intel]

Limitations of Scalar Pipelines

• Scalar upper bound on throughput
– IPC <= 1 or CPI >= 1

• Inefficient unified pipeline
– Long latency for each instruction

• Rigid pipeline stall policy
– One stalled instruction stalls all newer instructions

Parallel Pipelines

(a) No Parallelism (b) Temporal Parallelism

(c) Spatial Parallelism

(d) Parallel Pipeline

Intel Pentium Parallel Pipeline

IF

D1

D2

EX

WB

IF IF

D1 D1

D2 D2

EX EX

WB WB

U - Pipe V - Pipe

Diversified Pipelines

• • •

• • •

• • •

• • •IF

ID

RD

WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

Power4 Diversified Pipelines
PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

Reorder BufferBR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

Rigid Pipeline Stall Policy

Bypassing
of Stalled
Instruction

Stalled
Instruction

Backward
Propagation
of Stalling

Not Allowed

Dynamic Pipelines

• • •

• • •

• • •

• • •IF

ID

RD

WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

Dispatch
Buffer

Reorder
Buffer

(in order)

(out of order)

(out of order)

(in order)

Interstage Buffers

• • •

• • •

• • •

Stage i

Buffer (n)

Stage i +1

Stage i

Buffer (> n)

Stage i + 1

n

n

Stage i

Buffer (1)

Stage i + 1

(a) (b)

(c)

• • •

(in order)

(out of order)
_

(in order)1

1

• • •

(in order)

Superscalar Pipeline Stages

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

In
Program

Order

In
Program

Order

Out
of

Order

Limitations of Scalar Pipelines
• Scalar upper bound on throughput

– IPC <= 1 or CPI >= 1
– Solution: wide (superscalar) pipeline

• Inefficient unified pipeline
– Long latency for each instruction
– Solution: diversified, specialized pipelines

• Rigid pipeline stall policy
– One stalled instruction stalls all newer instructions
– Solution: Out-of-order execution, distributed execution

pipelines

High-IPC Processor

Mikko Lipasti-University of Wisconsin 21

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Instruction Flow

• Challenges:
– Branches: unpredictable
– Branch targets misaligned
– Instruction cache misses

• Solutions
– Prediction and speculation
– High-bandwidth fetch logic
– Nonblocking cache and prefetching

22

Instruction Cache

PC

only 3 instructions fetched

Objective: Fetch multiple instructions per cycle

Mikko Lipasti-University of Wisconsin

I-Cache Organization
R

o
w

D
e

co
d

er

•
•

•

Cache
Line

•
•

•

TAG

TAG

Address

1 cache line = 1 physical row

•
•

•
Cache
Line

•
•

•

TAG

TAG

Address

1 cache line = 2 physical rows

TAG

TAG R
o

w
D

e
co

d
er

Mikko Lipasti-University of Wisconsin 23

SRAM arrays need to be square to minimize delay

Fetch Alignment

Mikko Lipasti-University of Wisconsin 24

IBM RIOS-I Fetch Hardware

Mikko Lipasti-University of Wisconsin 25

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: 1
4

× 4 + 1
4

× 3+1
4

× 2+1
4

× 1= 2.5 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 13
16

× 4 + 1
16

× 3+ 1
16

× 2+ 1
16

× 1= 3.625 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Disruption of Instruction Flow

26

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish
Completion Buffer

Branch

Mikko Lipasti-University of Wisconsin

Branch Prediction

• Target address generation → Target speculation
– Access register:

• PC, General purpose register, Link register
– Perform calculation:

• +/- offset, autoincrement

• Condition resolution → Condition speculation
– Access register:

• Condition code register, General purpose register
– Perform calculation:

• Comparison of data register(s)

27Mikko Lipasti-University of Wisconsin

Target Address Generation

28

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Mikko Lipasti-University of Wisconsin

Branch Condition Resolution

29

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Mikko Lipasti-University of Wisconsin

Branch Instruction Speculation

30

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)
PC(seq.)Branch

Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

Mikko Lipasti-University of Wisconsin

Hardware Smith Predictor

• Jim E. Smith. A Study of Branch Prediction Strategies. International
Symposium on Computer Architecture, pages 135-148, May 1981

• Widely employed: Intel Pentium, PowerPC 604, MIPS R10000, etc.

31

Branch Address

Branch Prediction

m

2m k-bit counters

most significant bit

Saturating Counter
Increment/Decrement

Branch Outcome

Updated Counter Value

Mikko Lipasti-University of Wisconsin

Cortex A15: Bi-Mode Predictor

• PHT partitioned into T/NT halves
– Selector chooses source

• Reduces negative interference, since most entries in PHT0 tend
towards NT, and most entries in PHT1 tend towards T

Bra nch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor

Mikko Lipasti-University of Wisconsin 32

15% of A15 Core
Power!

Branch Target Prediction

• Does not work well for function/procedure returns
• Does not work well for virtual functions, switch statements

33

Branch Address

Branch ...target tag target tag target tag

 = = =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target
0 1

Mikko Lipasti-University of Wisconsin

Branch Speculation

• Leading Speculation
– Done during the Fetch stage
– Based on potential branch instruction(s) in the current fetch group

• Trailing Confirmation
– Done during the Branch Execute stage
– Based on the next Branch instruction to finish execution

34

NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)

Mikko Lipasti-University of Wisconsin

Branch Speculation

• Start new correct path
– Must remember the alternate (non-predicted) path

• Eliminate incorrect path
– Must ensure that the mis-speculated instructions

produce no side effects

35

NT T NT T NT TNT T

NT T NT T

NT T

(TAG 2)

(TAG 3) (TAG 1)

Mikko Lipasti-University of Wisconsin

Mis-speculation Recovery
• Start new correct path

1. Update PC with computed branch target (if predicted
NT)

2. Update PC with sequential instruction address (if
predicted T)

3. Can begin speculation again at next branch

• Eliminate incorrect path
1. Use tag(s) to deallocate resources occupied by

speculative instructions
2. Invalidate all instructions in the decode and dispatch

buffers, as well as those in reservation stations

36Mikko Lipasti-University of Wisconsin

Parallel Decode

• Primary Tasks
– Identify individual instructions (!)
– Determine instruction types
– Determine dependences between instructions

• Two important factors
– Instruction set architecture
– Pipeline width

37Mikko Lipasti-University of Wisconsin

Intel P6 Fetch/Decode

38Mikko Lipasti-University of Wisconsin

Predecoding in the AMD K5

• Now commonly employed in loop buffers,
decoded instruction caches (uop caches)

Dependence Checking

• Trailing instructions in fetch group
– Check for dependence on leading instructions

40

Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1

?= ?= ?= ?= ?= ?=

?= ?= ?= ?=

?= ?=

Mikko Lipasti-University of Wisconsin

Summary: Instruction Flow
• Fetch group alignment

• Target address generation
– Branch target buffer

• Branch condition prediction

• Speculative execution
– Tagging/tracking instructions
– Recovering from mispredicted branches

• Decoding in parallel
41Mikko Lipasti-University of Wisconsin

High-IPC Processor

Mikko Lipasti-University of Wisconsin 42

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Register Data Flow
• Parallel pipelines

– Centralized instruction fetch
– Centralized instruction decode

• Diversified execution pipelines
– Distributed instruction execution

• Data dependence linking
– Register renaming to resolve true/false

dependences
– Issue logic to support out-of-order issue
– Reorder buffer to maintain precise state

Mikko Lipasti-University of Wisconsin 43

Issue Queues and Execution Lanes

Mikko Lipasti-University of Wisconsin 44

Source: theregister.co.uk

ARM Cortex A15

Necessity of Instruction Dispatch

Centralized Reservation Station

Distributed Reservation Station

Issues in Instruction Execution
• Current trends

– More parallelism  bypassing very challenging
– Deeper pipelines
– More diversity

• Functional unit types
– Integer => short vector
– Floating point => vector (longer and longer)
– Load/store most difficult to make parallel
– Branch
– Specialized units (media)

• Very wide datapaths (256 bits/register or more)

Bypass Networks

• O(n2) interconnect from/to FU inputs and outputs
• Associative tag-match to find operands
• Solutions (hurt IPC, help cycle time)

– Use RF only (IBM Power4) with no bypass network
– Decompose into clusters (Alpha 21264)

PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

Reorder BufferBR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

Specialized units

Carry

 Intel Pentium 4
staggered adders
– Fireball

 Run at 2x clock
frequency

 Two 16-bit bitslices
 Dependent ops

execute on half-cycle
boundaries

 Full result not
available until full
cycle later

Specialized units
 FP multiply-

accumulate
R = (A x B) + C

 Doubles
FLOP/instruction

 Lose RISC instruction
format symmetry:
– 3 source operands

 Widely used

Media Data Types

• Subword parallel vector extensions
– Media data (pixels, quantized datum) often 1-2 bytes
– Several operands packed in single 32/64b register

{a,b,c,d} and {e,f,g,h} stored in two 32b registers

– Vector instructions operate on 4/8 operands in parallel
– New instructions, e.g. sum of abs. differences (SAD)

me = |a – e| + |b – f| + |c – g| + |d – h|

• Substantial throughput improvement
– Usually requires hand-coding of critical loops
– Shuffle ops (gather/scatter of vector elements)

e f g ha b c d

Program Data Dependences

• True dependence (RAW)
– j cannot execute until i

produces its result
• Anti-dependence (WAR)

– j cannot write its result until i
has read its sources

• Output dependence (WAW)
– j cannot write its result until i

has written its result
Mikko Lipasti-University of Wisconsin 53

φ≠∩)()(jRiD

φ≠∩)()(jDiR

φ≠∩)()(jDiD

Pipeline Hazards

• Necessary conditions:
– WAR: write stage earlier than read stage

• Is this possible in IF-RD-EX-MEM-WB ?
– WAW: write stage earlier than write stage

• Is this possible in IF-RD-EX-MEM-WB ?
– RAW: read stage earlier than write stage

• Is this possible in IF-RD-EX-MEM-WB?
• If conditions not met, no need to resolve
• Check for both register and memory

54

Pipeline Hazard Analysis

ALU

RD

IFIF

ID

RD

ALU

MEM

WB

D

S1

S2

W/RWData

RData2

Register
File

RAdd2
RData1

WAdd

RAdd1

• Memory hazards
– WAR: Yes/No?
– WAW: Yes/No?
– RAW: Yes/No?

• Register hazards
– WAR: Yes/No?
– WAW: Yes/No?
– RAW: Yes/No?

WAR: write stage earlier than read?
WAW: write stage earlier than write?
RAW: read stage earlier than write?

55

Register Data Dependences

• Program data dependences cause hazards
– True dependences (RAW)
– Antidependences (WAR)
– Output dependences (WAW)

• When are registers read and written?
– Out of program order!
– Hence, any and all of these can occur

• Solution to all three: register renaming
Mikko Lipasti-University of Wisconsin 56

Register Renaming: WAR/WAW

• Widely employed (Core i7, Cortex A15, …)
• Resolving WAR/WAW:

– Each register write gets unique “rename register”
– Writes are committed in program order at Writeback
– WAR and WAW are not an issue

• All updates to “architected state” delayed till writeback
• Writeback stage always later than read stage

– Reorder Buffer (ROB) enforces in-order writeback

Mikko Lipasti-University of Wisconsin 57

Add R3 <= … P32 <= …
Sub R4 <= … P33 <= …
And R3 <= … P35 <= …

Register Renaming: RAW

• In order, at dispatch:
– Source registers checked to see if “in flight”

• Register map table keeps track of this
• If not in flight, can be read from the register file
• If in flight, look up “rename register” tag (IOU)

– Then, allocate new register for register write

Mikko Lipasti-University of Wisconsin 58

Add R3 <= R2 + R1 P32 <= P2 + P1
Sub R4 <= R3 + R1 P33 <= P32 + P1
And R3 <= R4 & R2 P35 <= P33 + P2

Register Renaming: RAW

• Advance instruction to instruction queue
– Wait for rename register tag to trigger issue

• Issue queue/reservation station enables out-
of-order issue
– Newer instructions can bypass stalled instructions

Mikko Lipasti-University of Wisconsin 59Source: theregister.co.uk

Instruction scheduling

• A process of mapping a series of instructions into
execution resources
– Decides when and where an instruction is executed

 Data dependence graph
1

2 3 4

5 6

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

 Mapped to two FUs

Mikko Lipasti-University of Wisconsin 60

Instruction scheduling

• A set of wakeup and select operations
– Wakeup

• Broadcasts the tags of parent instructions selected
• Dependent instruction gets matching tags, determines if source

operands are ready
• Resolves true data dependences

– Select
• Picks instructions to issue among a pool of ready instructions
• Resolves resource conflicts

– Issue bandwidth
– Limited number of functional units / memory ports

Mikko Lipasti-University of Wisconsin 61

Scheduling loop

• Basic wakeup and select operations

== == OROR

readyL tagL readyRtagR

== == OROR

readyL tagL readyRtagR

tag W tag 1…

… …

ready - request
request n

grant n

grant 0
request 0

grant 1
request 1

……

selected

issue
to FU

broadcast the tag
of the selected inst

Select logic Wakeup logic

scheduling
loop

Mikko Lipasti-University of Wisconsin 62

Wakeup and Select

FU0 FU1

n

n+1

n+2

n+3

1

2 3

5 4

6

Select 1
Wakeup 2,3,4

Wakeup /
select

Select 2, 3
Wakeup 5, 6

Select 4, 5
Wakeup 6

Select 6

Ready inst
to issue

1

2, 3, 4

4, 5

6

1

2 3 4

5 6

Mikko Lipasti-University of Wisconsin 63

High-IPC Processor

Mikko Lipasti-University of Wisconsin 64

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Memory Data Flow

• Resolve WAR/WAW/RAW memory
dependences
– MEM stage can occur out of order

• Provide high bandwidth to memory hierarchy
– Non-blocking caches

Mikko Lipasti-University of Wisconsin 65

Memory Data
Dependences

• WAR/WAW: stores commit in order
– Hazards not possible.

• RAW: loads must check pending stores
– Store queue keeps track of pending stores
– Loads check against these addresses
– Similar to register bypass logic
– Comparators are 64 bits wide
– Must consider position (age) of loads and stores

• Major source of complexity in modern
designs
– Store queue lookup is position-based
– What if store address is not yet known?

66

Store
Queue

Load/Store RS

Agen

Reorder Buffer

Mem

Mikko Lipasti-University of Wisconsin

Increasing Memory Bandwidth

67

Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Expensive
to duplicate

Mikko Lipasti-University of Wisconsin

True Multiporting of SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out

Mikko Lipasti-University of Wisconsin 68

Increasing Memory Bandwidth

69

Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Complex,
concurrent

FSMs

Mikko Lipasti-University of Wisconsin

Address Victim LdTag State V[0:3] Data
Address Victim LdTag State V[0:3] Data

Address Victim LdTag State V[0:3] Data

Miss Status Handling Register

• Each MSHR entry keeps track of:
– Address: miss address
– Victim: set/way to replace
– LdTag: which load (s) to wake up
– State: coherence state, fill status
– V[0:3]: subline valid bits
– Data: block data to be filled into cache

Mikko Lipasti-University of Wisconsin 70

Address Victim LdTag State V[0:3] Data

Maintaining Precise State

• Out-of-order execution
– ALU instructions
– Load/store instructions

• In-order completion/retirement
– Precise exceptions

• Solutions
– Reorder buffer retires instructions in order
– Store queue retires stores in order
– Exceptions can be handled at any instruction

boundary by reconstructing state out of ROB/SQ

71Mikko Lipasti-University of Wisconsin

ROB

Head

Tail

Summary: A High-IPC Processor

Mikko Lipasti-University of Wisconsin 72

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Superscalar Overview
• Instruction flow

– Branches, jumps, calls: predict target, direction
– Fetch alignment
– Instruction cache misses

• Register data flow
– Register renaming: RAW/WAR/WAW
– Instruction scheduling: wakeup & select

• Memory data flow
– In-order stores: WAR/WAW
– Store queue: RAW
– Data cache misses

	Superscalar Organization�ECE/CS 752 Fall 2017
	CPU, circa 1986
	Iron Law
	Limitations of Scalar Pipelines
	Superscalar Proposal
	Limits on Instruction Level Parallelism (ILP)
	High-IPC Processor Evolution
	What Does a High-IPC CPU Do?
	A Typical High-IPC Processor
	Power Consumption
	Limitations of Scalar Pipelines
	Parallel Pipelines
	Intel Pentium Parallel Pipeline
	Diversified Pipelines
	Power4 Diversified Pipelines
	Rigid Pipeline Stall Policy
	Dynamic Pipelines
	Interstage Buffers
	Superscalar Pipeline Stages
	Limitations of Scalar Pipelines
	High-IPC Processor
	Instruction Flow
	I-Cache Organization
	Fetch Alignment
	IBM RIOS-I Fetch Hardware
	Disruption of Instruction Flow
	Branch Prediction
	Target Address Generation
	Branch Condition Resolution
	Branch Instruction Speculation
	Hardware Smith Predictor
	Cortex A15: Bi-Mode Predictor
	Branch Target Prediction
	Branch Speculation
	Branch Speculation
	Mis-speculation Recovery
	Parallel Decode
	Intel P6 Fetch/Decode
	Predecoding in the AMD K5
	Dependence Checking
	Summary: Instruction Flow
	High-IPC Processor
	Register Data Flow
	Issue Queues and Execution Lanes
	Necessity of Instruction Dispatch
	Centralized Reservation Station
	Distributed Reservation Station
	Issues in Instruction Execution
	Bypass Networks
	Specialized units
	Specialized units
	Media Data Types
	Program Data Dependences
	Pipeline Hazards
	Pipeline Hazard Analysis
	Register Data Dependences
	Register Renaming: WAR/WAW
	Register Renaming: RAW
	Register Renaming: RAW
	Instruction scheduling
	Instruction scheduling
	Scheduling loop
	Wakeup and Select
	High-IPC Processor
	Memory Data Flow
	Memory Data Dependences
	Increasing Memory Bandwidth
	True Multiporting of SRAM
	Increasing Memory Bandwidth
	Miss Status Handling Register
	Maintaining Precise State
	Summary: A High-IPC Processor
	Superscalar Overview

