
Adding Selective Replay
and Bank Conflict
Prediction to the Out-of-
Order CPU model in Gem5
Pradeep Kumar
Nikhita Kunati

Life of an instruction in the O3 CPU
model.

Current O3 model doesn’t allow speculative scheduling of
load dependent instructions and on a memory order
violation it squashes all the instructions in the pipeline and
re-fetches from the violating PC

SELECTIV
E TOKEN
BASED
REPLAY

IDEA – Allocate a token to every load and every dependent
instruction inherits the token id in a dependence vector

Fetch Decod
e Commit

Alloc

Queue

Mem
dep

Renam
e

Schedul
e Comp.Exe

Token
propagation

Deallocate Tokens

Token
allocation

Selective Replay for
Token heads

Architecte
d Register

Physical
Register

Dependence
vector

R2 p2 00000000

R1 p9 00000001

R4 p7 00000001

R3 p4 00000011

R5 P11 00000011

LOAD R1, [R2]  Token ID 1
ADD R4,R1,R2
LOAD R3,[R4]  Token ID 2
SUB R5,R3,R4

While renaming dest regs once mapping is done

If (inst->isLoad) {
 depVector[renamedDestReg] = depVector[renamedDestReg] | (1 << (tokenID -1)
}
Iterate(renamedSrcRegs) {
 depVector[renamedDestReg] = dep[renamedDestReg] |
depVector[renamedSrcReg]
}

Changes made
to O3 source
code

• rename_impl.hh, rename.hh -> tokenID allocation/deallocation,
dependence vector calculation, clearing dependence vector

• In the inst_queue_impl.hh instead of popping entries from the
instList during commit we added a logic to only pop entries with
dependence vector as all zeroes. We maintain a replayQueue
which has instructions with non-zero Dependence vectors and
remove insts when the commit.

• In lsq_unit_impl.hh when we detect a memory order violation we
replay->notify(tokenID). And in the next cycle in issue stage we
reissue instructions that match the tokenID from replayQueue.

• Changes made to Fetch and decode and ROB to not squash
instructions.

OoO Execution 8-wide fetch/issue/commit, 256 ROB,
128 LSQ, 128 issue queue entries

Functional Units(Latency) 8 INT ALUs(1), 4 FP ALUs(2), 4 INT
MULT/DIV(3/20), 4 FP MULT/DIV(4/24),
4 general memory ports

Branch Prediction Tournament Predictor

Memory System(Latency) 32KB 2-way 64B line L1I(2), 32KB 4-way
64B line L1D(2), 512KB 4-way 64B line
L2(8), 8193MB main memory(1ns)

EVALUATIO
N

bwaves GemsFDTD h264ref mcf omnetpp sphinx3 wrf
0

20

40

60

80

100

120

140

memOrderViolationEvents

memOrderViolationEvents

bwaves GemFDTD h264ref mcf omnetpp sphinx3 wrf
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

Number of squashed instructions issued

Number of squashed instructions issued

gcc omnetpp h264ref calculix gobmk hmmer
0

5

10

15

20

25

30

35

40

45

50

33.2 33.2
34.6

41.1

34.9

44.4

% of instructions not dependent on the violating loads

357832 292044 363459 559361 410075 398001
357360 291494 350000 557000 390000 370000

Squashing
Selective Reply

gcc hmmer omnetpp h264ref calculix gobmk0

100000

200000

300000

400000

500000

600000
Number of squashed instructions that are issued

Squashing Selective Reply

BANK
CONFLICT
PREDICTION

MOTIVATION – To allow more
than one concurrent memory

reference Multi-Banked caches
were proposed as a less

expensive option compared to
multiported cache however

possible bank conflicts may pose
as a limitation

IDEA – Use Bank conflict
prediction to intelligently

schedule load instructions that
have less chance of conflicting.

Previous Work on
Bank Prediction

 Previously proposed technique
involves predicting a bank for
each load which will improve
scheduling of loads as well as
simplify the memory execution
pipeline

Ready Queue
Load
Sub
Add
Store
Load
Add
Add
Mov

NOCONFLIC
TCONFLICT

CONFLICTNOCONFLIC
T

NOCONFLIC
T

NOCONFLIC
T

CONFLICTCONFLICT Load

Load

Load Load

OoO Execution 8-wide fetch/issue/commit, 256 ROB, 128 LSQ, 128 issue
queue entries

Memory System(Latency) 32KB 2-way 64B line L1I(2), 32KB 4-way 64B line L1D(2),
512KB 4-way 64B line L2(8), 8193MB main memory(1ns)

Benchmark Total number
of loads

Total number
of bank
conflicting
Loads

Leslie3d 32534 4348

Gcc 25648 3816

Milc 23012 2470

hmmer 29049 3389

calculix 35507 5949

Xalancbmk 27936 3814 leslie3d gcc milc hmmer xalancbmk calculix
0

2

4

6

8

10

12

14

16

18 % of conflicting loads

% of conflicting loads

Changes in Gem5 Source
codeMade a record of all the load instructions that got scheduled at the

same cycle.
Prediction for each load was made based on their PC Address.

If there are more than one conflicting predictions then Scheduling
logic pushes the load instruction back to the ready queue for the next
cycle.
In the IEW Unit,

When the address for all the same cycle dispatched load instructions
was calculated, we can easily find out the number of actually
conflicted loads and thus update the conflict predictor table along
with the hashed PC address.(This is how we train the predictor).

Changes in
IQ::scheduleReadyInsts

()

Changes in
IEW::ExecuteLoad()

Difficulty faced while implementing in Gem5
No L1D cache banks option available in Gem5.
L2 cache banking is implemented in Ruby cache simulator.(Part of Gem5)
But very hard to replicate the same thing for L1D.
We tried but failed to do so.

A common Data structure was required for Scheduling logic to read while
predicting and executeLoad() function to update it.

Both were happening in different cycle for the same load.
We spent a lot time in figuring out and then moved on to generate Trace.

We generated traces(PC address + effective mem address) of all the load
instructions that got issued in the same cycle by making some changes in
the execute stage of gem5.
Used These traces for an offline predictor that we wrote in Perl.

FUTURE
WORK

• Improvise token-ID allocation to loads with confidence estimator

• Add speculative scheduling of dependent instructions to see more benfits
of selective replay.

• Handle inflight instructions in the O3 cpu model cleanely on the event of a
memory order violation

References

[1] I. Kim and M. Lipasti. “Understanding Scheduling Replay Schemes.” In
Proc. 10th International Symposium on High Performance Computer
Architecture, Feb. 2004.

[2] A. Yoaz, E. Mattan, R. Ronen, and S. Jourdan.: Speculation Techniques for
Improving Load Related Instruction Scheduling. Proc. of 26th ISCA (1999) 42–
53

[3] The gem5 Simulator. Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. May 2011, ACM
SIGARCH Computer Architecture News.

http://dx.doi.org/10.1145/2024716.2024718

