
ECE/CS 752: Midterm 1 Review
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen
Updated by Mikko Lipasti

Computer Architecture

• Instruction Set Architecture (IBM 360)
– … the attributes of a [computing] system as seen by the

programmer. I.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls, the logic design, and the
physical implementation. -- Amdahl, Blaaw, & Brooks,
1964

• Machine Organization (microarchitecture)
– ALUS, Buses, Caches, Memories, etc.

• Machine Implementation (realization)
– Gates, cells, transistors, wires

Iron Law

Processor Performance = ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)

Ideal Pipelining

• Bandwidth increases linearly with pipeline depth

• Latency increases by latch delays

Gate
Delay

Comb. Logic
n Gate Delay

Gate
Delay

L Gate
DelayL

L Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--
2

n
--
2

n
--
3

n
--
3

n
--
3

BW = ~(2/n)

BW = ~(3/n)

Example (quicksort/MIPS)

for (; (j < high) && (array[j] < array[low]) ; ++j);

$10 = j

$9 = high

$6 = array

$8 = low

bge done, $10, $9

mul $15, $10, 4

addu $24, $6, $15

lw $25, 0($24)

mul $13, $8, 4

addu $14, $6, $13

lw $15, 0($14)

bge done, $25, $15

cont:

addu $10, $10, 1

. . .

done:

addu $11, $11, -1

Pipeline Hazards

• Necessary conditions:
– WAR: write stage earlier than read stage

• Is this possible in IF-RD-EX-MEM-WB ?

– WAW: write stage earlier than write stage
• Is this possible in IF-RD-EX-MEM-WB ?

– RAW: read stage earlier than write stage
• Is this possible in IF-RD-EX-MEM-WB?

• If conditions not met, no need to resolve
• Check for both register and memory

Pipelining Review

• Pipelining Overview
• Control

– Data hazards
• Stalls

• Forwarding or bypassing

– Control flow hazards
• Branch prediction

Technology Challenges
• Technology scaling, Moore vs. Dennard

• Power: dynamic, static

– CMOS scaling trends

– Power vs. Energy

– Dynamic power vs. leakage power

• Usage Models: thermal, efficiency, longevity

• Circuit Techniques

• Architectural Techniques

• Variability

• Packaging

Readings

• Read on your own:
– Shekhar Borkar, Designing Reliable Systems from Unreliable

Components: The Challenges of Transistor Variability and Degradation,
IEEE Micro 2005, November/December 2005 (Vol. 25, No. 6) pp. 10-16.

– 2015 ITRS Roadmap -- Executive Summary. Read sections 1, 5, 6, 8, 9,
and skim the rest.

• Review by Wed 9/13/2017:
– Jacobson, H, et al., “Stretching the limits of clock-gating efficiency in

server-class processors,” in Proceedings of HPCA-11, 2005.

Pipelining to Superscalar

• Forecast

– Limits of pipelining

– The case for superscalar

– Instruction-level parallel machines

– Superscalar pipeline organization

– Superscalar pipeline design

Amdahl’s Law

• h = fraction of time in serial code
• f = fraction that is vectorizable
• v = speedup for f
• Overall speedup:

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

v

f
f

Speedup





1

1

Revisit Amdahl’s Law

• Sequential bottleneck

• Even if v is infinite

– Performance limited by nonvectorizable
portion (1-f)

f

v

f
f

v 



 1

1

1

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

Pipelined Performance Model

• Tyranny of Amdahl’s Law [Bob Colwell]
– When g is even slightly below 100%, a big performance

hit will result
– Stalled cycles are the key adversary and must be

minimized as much as possible

1-g g

Pipeline
Depth

N

1

Superscalar Proposal

• Moderate tyranny of Amdahl’s Law

– Ease sequential bottleneck

– More generally applicable

– Robust (less sensitive to f)

– Revised Amdahl’s Law:

 
v

f

s

f
Speedup





1

1

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Baseline scalar RISC

– Issue parallelism = IP = 1

– Operation latency = OP = 1

– Peak IPC = 1

1

2
3

4
5

6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
T

R
U

C
T

IO
N

S

Superscalar Challenges

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Limitations of Scalar Pipelines

• Scalar upper bound on throughput
– IPC <= 1 or CPI >= 1

– Solution: wide (superscalar) pipeline

• Inefficient unified pipeline
– Long latency for each instruction

– Solution: diversified, specialized pipelines

• Rigid pipeline stall policy
– One stalled instruction stalls all newer instructions

– Solution: Out-of-order execution, distributed execution
pipelines

RIOS-I Fetch Hardware

Pentium Pro Fetch/Decode

Centralized Reservation Station

Distributed Reservation Station

Bypass Networks

• O(n2) interconnect from/to FU inputs and outputs
• Associative tag-match to find operands
• Solutions (hurt IPC, help cycle time)

– Use RF only (IBM Power4) with no bypass network

– Decompose into clusters (Alpha 21264)

PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

Reorder Buffer
BR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

Issues in Completion/Retirement
• Out-of-order execution

– ALU instructions

– Load/store instructions

• In-order completion/retirement
– Precise exceptions

– Memory coherence and consistency

• Solutions
– Reorder buffer

– Store buffer

– Load queue snooping (later)

Superscalar Summary

• Instruction flow
– Branches, jumps, calls: predict target, direction

– Fetch alignment

– Instruction cache misses

• Register data flow
– Register renaming: RAW/WAR/WAW

• Memory data flow
– In-order stores: WAR/WAW

– Store queue: RAW

– Data cache misses

Instruction Flow Techniques

• Goal of Instruction Flow and Impediments

• Branch Types and Implementations

• What’s So Bad About Branches?

• What are Control Dependences?

• Impact of Control Dependences on
Performance

• Improving I-Cache Performance

Goal and Impediments

• Goal of Instruction Flow

– Supply processor with maximum number of useful
instructions every clock cycle

• Impediments

– Branches and jumps

– Finite I-Cache

• Capacity

• Bandwidth restrictions

Branch Types and
Implementation

1. Types of Branches

A. Conditional or Unconditional

B. Save PC?

C. How is target computed?
• Single target (immediate, PC+immediate)

• Multiple targets (register)

2. Branch Architectures

A. Condition code or condition registers

B. Register

What’s So Bad About Branches?

Problem: Fetch stalls until direction is determined
Solutions:
• Minimize delay

– Move instructions determining branch condition away
from branch (CC architecture)

• Make use of delay

– Non-speculative:
• Fill delay slots with useful safe instructions

• Execute both paths (eager execution)

– Speculative:
• Predict branch direction

What’s So Bad About Branches?

Problem: Fetch stalls until branch target is determined

Solutions:

• Minimize delay

– Generate branch target early

• Make use of delay: Predict branch target

– Single target

– Multiple targets

Riseman and Foster’s Study

• 7 benchmark programs on CDC-3600
• Assume infinite machines

– Infinite memory and instruction stack

– Infinite register file

– Infinite functional units

– True dependencies only at dataflow limit

• If bounded to single basic block, speedup is 1.72
(Flynn’s bottleneck)

• If one can bypass n branches (hypothetically), then:

Branches
Bypassed

0 1 2 8 32 128 

Speedup 1.72 2.72 3.62 7.21 14.8 24.4 51.2

Improving I-Cache Performance

• Larger Cache Size
• More associativity
• Larger line size
• Prefetching

– Next-line

– Target

– Markov

• Code layout
• Other types of cache organization

– Trace cache [Ch. 9]

Lecture Overview

• Program control flow
– Implicit sequential control flow
– Disruptions of sequential control flow

• Branch Prediction
– Branch instruction processing
– Branch instruction speculation

• Key historical studies on branch prediction
– UCB Study [Lee and Smith, 1984]
– IBM Study [Nair, 1992]

• Branch prediction implementation (PPC 604)
– BTAC and BHT design
– Fetch Address Generation

Branch Prediction

• Target address generation  Target Speculation
– Access register:

• PC, General purpose register, Link register

– Perform calculation:
• +/- offset, autoincrement, autodecrement

• Condition resolution  Condition speculation
– Access register:

• Condition code register, General purpose register

– Perform calculation:
• Comparison of data register(s)

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish
Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish
Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)

PC(seq.)Branch
Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

Branch/Jump Target Prediction

• Branch Target Buffer: small cache in fetch stage
– Previously executed branches, address, taken history, target(s)

• Fetch stage compares current FA against BTB
– If match, use prediction
– If predict taken, use BTB target

• When branch executes, BTB is updated
• Optimization:

– Size of BTB: increases hit rate
– Prediction algorithm: increase accuracy of prediction

Branch inst. Information Branch target
address for predict. address (most recent)

Branch Prediction: Condition Speculation

1. Biased Not Taken
– Hardware prediction
– Does not affect ISA
– Not effective for loops

2. Software Prediction
– Extra bit in each branch instruction

• Set to 0 for not taken
• Set to 1 for taken

– Bit set by compiler or user; can use profiling
– Static prediction, same behavior every time

3. Prediction based on branch offset
– Positive offset: predict not taken
– Negative offset: predict taken

4. Prediction based on dynamic history

Exhaustive Search for Optimal 2-bit Predictor
• There are 220 possible state machines of 2-bit predictors

• Some machines are uninteresting, pruning them out reduces the
number of state machines to 5248

• For each benchmark, determine prediction accuracy for all the
predictor state machines

• Find optimal 2-bit predictor for each application

BTAC and BHT Design (PPC 604)

Decode Buffer

Dispatch Buffer

Decode

Reservation

Dispatch

Stations

Issue

Execute

Finish Completion

Branch

FA

Branch Target
Address Cache

 F
A

-m
u

x

Branch History
Table (BHT)

BTAC

BHT

SFX SFX CFX FPU LSBRN

 Buffer

(BTAC)

I-cache

update

update

FA FA

F
A

R

+4

BTAC prediction

BHT prediction

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
 history based prediction
- overrides BTAC prediction

Advanced Branch Prediction

• Control Flow Speculation
– Branch Speculation
– Mis-speculation Recovery

• Two-Level Adaptive Branch Prediction
• Global BHSR Scheme (GAs)
• Per-Branch BHSR Scheme (PAs)
• Gshare Branch Predictor
• Combining branch predictor
• Understanding Advanced Predictors
• Perceptron branch predictor

Branch Speculation

• Leading Speculation
1. Tag speculative instructions

2. Advance branch and following instructions

3. Buffer addresses of speculated branch
instructions

• Trailing Confirmation
1. When branch resolves, remove/deallocate

speculation tag

2. Permit completion of branch and following
instructions

Two-Level Adaptive Branch Prediction

• So far, the prediction of each static branch instruction is
based solely on its own past behavior and independent of
the behaviors of other neighboring static branch
instructions (except for inadvertent aliasing).

00...00

00...01

00...10

11...10

11...11

1 1 1 1 0

Branch History Register
(shift left when update)

Pattern History Table (PHT)

PHT
Bits

Prediction

Branch Result

index

FSM
Logic

old

new

Combining Branch Predictor

2-level Branch
Predictor

(e.g. gshare)

Branch Address

Simple Branch
Predictor

(e.g. bimodal)

Selector

Prediction

Understanding Advanced Predictors
• Four types of history

– Local (bimodal) history (Smith predictor)
• Table of counters summarizes local history
• Simple, but only effective for biased branches

– Local outcome history
• Shift register of individual branch outcomes
• Separate counter for each outcome history

– Global outcome history
• Shift register of recent branch outcomes
• Separate counter for each outcome history

– Path history
• Shift register of recent (partial) block addresses
• Can differentiate similar global outcome histories

• Can combine or “alloy” histories in many ways

Understanding Advanced Predictors

• History length
– Short history—lower training cost
– Long history—captures macro-level

behavior
– Variable history length predictors

• Really long history (long loops)
– Fourier transform into frequency domain

• Limited capacity & interference
– Constructive vs. destructive
– Bi-mode, gskewed, agree, YAGS
– Read sec. 9.3.2 carefully

Summary

• Control Flow Speculation
– Branch Speculation

– Mis-speculation Recovery

• Two-Level Adaptive Branch Prediction
• Global BHSR Scheme (GAs)
• Per-Branch BHSR Scheme (PAs)
• Gshare Branch Predictor
• Combining branch predictor
• Understanding advanced predictors

– Study Chapter 9 !!!

• Perceptron branch predictor

Register Data Flow Techniques

• Register Data Flow
– Resolving Anti-dependences

– Resolving Output Dependences

– Resolving True Data Dependences

• Tomasulo’s Algorithm [Tomasulo, 1967]
– Modified IBM 360/91 Floating-point Unit

– Reservation Stations

– Common Data Bus

– Register Tags

– Operation of Dependency Mechanisms

The Big Picture

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences Output Dependences

Storage Conflicts

(Structural Dependences)

(RAW)

(WAR) (WAW)

Contribution to Register Recycling
COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg.
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

Reuse Same Set of Reg. in
Each Iteration

Overlapped Execution of
Different Iterations

For (k=1;k<= 10; k++)
 t += a [i] [k] * b [k] [j] ;

9 $34: mul $14 $7, 40

10 addu $15, $4, $14

11 mul $24, $9, 4

12 addu $25, $15, $24

13 lw $11, 0($25)

14 mul $12, $9, 40

15 addu $13, $5, $12

16 mul $14, $8, 4

17 addu $15, $13, $14

18 lw $24, 0($15)

19 mul $25, $11, $24

20 addu $10, $10, $25

21 addu $9, $9, 1

22 ble $9, 10, $34

Register Renaming
Register Renaming Resolves:

 Anti-Dependences

 Output Dependences

Design of Redundant Registers:

Number:

One

Multiple

Allocation:

Fixed for Each Register

Pooled for all Regsiters

Location:

Attached to Register File
(Centralized)

Attached to functional units
(Distributed)

Architected Physical
Registers Registers

R1
R2

•
•
•

Rn

P1

P2
•

•
•
Pn

•
•

•
Pn + k

Register Renaming in the RIOS-I FPU

FPU Register Renaming

Map table
32 x 6

32 33 34 35 36 37 38 39

Free Listhead tail

head

tail
release

Pending Target Return Queue

FAD 3 2 1 FAD 3 2 1

OP T S1 S2 S3 OP T S1 S2 S3

Incoming FPU instructions pass through a renaming table prior to decode

The 32 architectural registers are remapped to 40 physical registers

Physical register names are used within the FPU

Complex control logic maintains active register mapping

Simplified FPU Register Model

Resolving True Data Dependences

 STALL DISPATCHING

 ADVANCE INSTRUCTIONS

 “DYNAMIC EXECUTION”

 Reservation Station + Complex Forwarding

 Out-of-order (OoO) Execution

 Try to Approach the “Data-Flow Limit”

REGISTER READ

ALU OP

REGISTER WRITE

(1) R2 R1 + 1
 •
 •
 •
(2) R3 R2
 •
 •
 •
(3) R4 R3

Embedded “Data Flow” Engine
Dispatch Buffer

Reservation

Dispatch

Complete

Stations

“Dynamic

Completion Buffer

Branch

Execution”

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data
 being forwarded
- Issue when all
 operands ready

- Advance instructions
 to reservation stations

IBM 360/91 FPU

Adder

Floating Point

Registers FLR

0

2

4

8

Store

Data

1

2

3

Buffers SDB

Control

Decoder

Floating

Operand

Stack

FLOS

Control

Floating Point

Buffers FLB

1

2

3

4

5

6

Decoder

Floating Point

Registers (FLR)

Control

0

2

4

8

Floating

Operand

 Stack

Floating Point

Buffers (FLB)

1

2

3

4

5
6

Store

Data

1

2

3

Buffers (SDB)

Control

Storage Bus Instruction Unit

Result

Multiply/Divide

•

Common Data Bus (CDB)

 Point

Busy
Bits

Adder

FLB Bus
FLR Bus

CDB ••

•

•

Tags

Tags

Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

•

Result

(FLOS)

Summary of Tomasulo’s Algorithm

• Supports out of order execution of instructions.

• Resolves dependences dynamically using hardware.

• Attempts to delay the resolution of dependencies as late as possible.

• Structural dependence does not stall issuing; virtual FU’s in the form of
reservation stations are used.

• Output dependence does not stall issuing; copying of old tag to
reservation station and updating of tag field of the register with
pending write with the new tag.

• True dependence with a pending write operand does not stall the
reading of operands; pseudo operand (tag) is copied to reservation
station.

• Anti-dependence does not stall write back; earlier copying of operand
awaiting read to the reservation station.

• Can support sequence of multiple output dependences.

• Forwarding from FU’s to reservation stations bypasses the register file.

Tomasulo vs. Modern OOO

IBM 360/91 Modern

Width Peak IPC = 1 4+

Structural hazards 2 FPU

Single CDB

Many FU

Many busses

Anti-dependences Operand copy Reg. Renaming

Output dependences Renamed reg. tag Reg. renaming

True dependences Tag-based forw. Tag-based forw.

Exceptions Imprecise Precise (ROB)

Implementation 3 x 66” x 15” x 78”

60ns cycle time

11-12 gate delays per
pipe stage

>$1 million

1 chip

300ps

< $100

“Dataflow Engine” for Dynamic Execution

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

registers

Instruction Processing Steps
•DISPATCH:

•Read operands from Register File (RF) and/or Rename Buffers (RRB)

•Rename destination register and allocate RRB entry

•Allocate Reorder Buffer (ROB) entry

•Advance instruction to appropriate Reservation Station (RS)

•EXECUTE:

•RS entry monitors bus for register Tag(s) to latch in pending operand(s)

•When all operands ready, issue instruction into Functional Unit (FU) and
deallocate RS entry (no further stalling in execution pipe)

•When execution finishes, broadcast result to waiting RS entries, RRB entry, and
ROB entry

•COMPLETE:

•Update architected register from RRB entry, deallocate RRB entry, and if it is a
store instruction, advance it to Store Buffer

•Deallocate ROB entry and instruction is considered architecturally completed

Reservation Station Implementation

• Reservation Stations: distributed vs. centralized
– Wakeup: benefit to partition across data types

– Select: much easier with partitioned scheme

• Select 1 of n/4 vs. 4 of n

Reorder Buffer

Reservation

Stations

or

Issue Queue

In Order In Order

Out of

Order

Out of

Order

Data Capture Reservation Station

• Reservation Stations

– Data capture vs. no data capture

– Latter leads to “speculative scheduling”

Register File Alternatives

• Rename register organization
– Future file (future updates buffered, later committed)

• Rename register file

– History file (old versions buffered, later discarded)
– Merged (single physical register file)

Register
Lifetime

Status
Duration

(cycles)

Result stored where?

Future File History File Phys. RF

Dispatch Unavail  1 N/A N/A N/A

Finish
execution

Speculative  0 FF ARF PRF

Commit Committed  0 ARF ARF PRF

Next def.
Dispatched

Committed  1 ARF HF PRF

Next def.
Committed

Discarded  0 Overwritten Discarded Reclaimed

Rename Table Implementation

• MAP checkpointing
– Recovery from branches, exceptions

– Checkpoint granularity
• Every instruction

• Every branch, playback to get to exception
boundary

• RAM Map
– Just a lookup table; checkpoints nxm each

• CAM Map
– Positional bit vectors; checkpoints a single

column

Summary
• Register dependences

– True dependences

– Antidependences

– Output dependences

• Register Renaming
• Tomasulo’s Algorithm
• Reservation Station Implementation
• Reorder Buffer Implementation
• Register File Implementation

– History file

– Future file

– Physical register file

• Rename Table Implementation

Memory Data Flow

• Memory Data Flow

– Memory Data Dependences

– Load Bypassing

– Load Forwarding

– Speculative Disambiguation

– The Memory Bottleneck

• Basic Memory Hierarchy Review

Optimizing Load/Store Disambiguation

• Non-speculative load/store disambiguation

1. Loads wait for addresses of all prior stores

2. Full address comparison

3. Bypass if no match, forward if match

• (1) can limit performance:

load r5,MEM[r3]  cache miss

store r7, MEM[r5]  RAW for agen, stalled

…

load r8, MEM[r9]  independent load stalled

Speculative Disambiguation

• What if aliases are rare?
1. Loads don’t wait for addresses of

all prior stores

2. Full address comparison of stores
that are ready

3. Bypass if no match, forward if
match

4. Check all store addresses when
they commit

– No matching loads – speculation
was correct

– Matching unbypassed load –
incorrect speculation

5. Replay starting from incorrect
load

Load

Queue

Store

Queue

Load/Store RS

Agen

Reorder Buffer

Mem

Use of Prediction
• If aliases are rare: static prediction

– Predict no alias every time
• Why even implement forwarding? PowerPC 620 doesn’t

– Pay misprediction penalty rarely

• If aliases are more frequent: dynamic prediction
– Use PHT-like history table for loads

• If alias predicted: delay load
• If aliased pair predicted: forward from store to load

– More difficult to predict pair [store sets, Alpha 21264]

– Pay misprediction penalty rarely

• Memory cloaking [Moshovos, Sohi]
– Predict load/store pair
– Directly copy store data register to load target register
– Reduce data transfer latency to absolute minimum

Easing The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

Memory Bottleneck Techniques
Dynamic Hardware (Microarchitecture):

Use Non-blocking D-cache (need missed-load buffers)

Use Multiple Load/Store Units (need multiported D-cache)

Use More Advanced Caches (victim cache, stream buffer)

Use Hardware Prefetching (need load history and stride detection)

Static Software (Code Transformation):

Insert Prefetch or Cache-Touch Instructions (mask miss penalty)

Array Blocking Based on Cache Organization (minimize misses)

Reduce Unnecessary Load/Store Instructions (redundant loads)

Software Controlled Memory Hierarchy (expose it to above DSI)

Memory Hierarchy

• Memory
– Just an “ocean of bits”

– Many technologies are available

• Key issues
– Technology (how bits are stored)

– Placement (where bits are stored)

– Identification (finding the right bits)

– Replacement (finding space for new bits)

– Write policy (propagating changes to bits)

• Must answer these regardless of memory type

Memory Hierarchy

Registers

On-Chip
SRAM

Off-Chip
SRAM

DRAM

Disk

C
A
P
A
C
IT

Y

S
P
E
E
D

 a
n
d
 C

O
S
T

Memory Hierarchy

CPU

I & D L1 Cache

Shared L2 Cache

Main Memory

Disk

Temporal Locality
•Keep recently referenced
items at higher levels

•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels

•Future references satisfied
quickly

Four Burning Questions

• These are:
– Placement

• Where can a block of memory go?

– Identification
• How do I find a block of memory?

– Replacement
• How do I make space for new blocks?

– Write Policy
• How do I propagate changes?

• Consider these for caches
– Usually SRAM

• Will consider main memory, disks later

Placement and Identification

• Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)
– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)
– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

• Total size = BS x B = BS x S x (B/S)

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Several policies are possible
– FIFO (first-in-first-out)

– LRU (least recently used)

– NMRU (not most recently used)

– Pseudo-random (yes, really!)

• Pick victim within set where a = associativity
– If a <= 2, LRU is cheap and easy (1 bit)

– If a > 2, it gets harder

– Pseudo-random works pretty well for caches

Write Policy

• Most widely used: write-back
• Maintain state of each line in a cache

– Invalid – not present in the cache

– Clean – present, but not written (unmodified)

– Dirty – present and written (modified)

• Store state in tag array, next to address tag
– Mark dirty bit on a write

• On eviction, check dirty bit
– If set, write back dirty line to next level

– Called a writeback or castout

Write Policy

• Complications of write-back policy
– Stale copies lower in the hierarchy

– Must always check higher level for dirty copies before
accessing copy in a lower level

• Not a big problem in uniprocessors
– In multiprocessors: the cache coherence problem

• I/O devices that use DMA (direct memory access)
can cause problems even in uniprocessors
– Called coherent I/O

– Must check caches for dirty copies before reading main
memory

Caches and Performance

• Caches

– Enable design for common case: cache hit
• Cycle time, pipeline organization

• Recovery policy

– Uncommon case: cache miss
• Fetch from next level

– Apply recursively if multiple levels

• What to do in the meantime?

• What is performance impact?

• Various optimizations are possible

Performance Impact

• Cache hit latency
– Included in “pipeline” portion of CPI

• E.g. IBM study: 1.15 CPI with 100% cache hits

– Typically 1-3 cycles for L1 cache
• Intel/HP McKinley: 1 cycle

– Heroic array design

– No address generation: load r1, (r2)

• IBM Power4: 3 cycles
– Address generation

– Array access

– Word select and align

– Register file write (no bypass)

Cache Hit continued

• Cycle stealing common
– Address generation < cycle

– Array access > cycle

– Clean, FSD cycle boundaries violated

• Speculation rampant
– “Predict” cache hit

– Don’t wait for tag check

– Consume fetched word in pipeline

– Recover/flush when miss is detected
• Reportedly 7 (!) cycles later in Pentium 4

AGEN CACHE

AGEN CACHE

83

Replacement Recap
 Replacement policies affect capacity and conflict misses

 Policies covered:

 Belady’s optimal replacement

 Least-recently used (LRU)

 Practical pseudo-LRU (tree LRU)

 Protected LRU

 LIP/DIP variant

 Set dueling to dynamically select policy

 Not-recently-used (NRU) or clock algorithm

 RRIP (re-reference interval prediction)

 Least frequently used (LFU)

 Championship contests

Mikko Lipasti-University of Wisconsin

Prefetching Recap

• Prefetching anticipates future memory
references

– Software prefetching

– Next-block, stride prefetching

– Global history buffer prefetching

• Issues/challenges

– Accuracy

– Timeliness

– Overhead (bandwidth)

– Conflicts (displace useful data)

Mikko Lipasti-University of Wisconsin 84

Memory Data Flow

• Memory Data Flow Challenges
– Memory Data Dependences

– Load Bypassing

– Load Forwarding

– Speculative Disambiguation

– The Memory Bottleneck

• Cache Hits and Cache Misses

• Replacement Policies

• Prefetching

Mikko Lipasti-University of Wisconsin 85

Pentium Pro Case Study

• Microarchitecture

– Order-3 Superscalar

– Out-of-Order execution

– Speculative execution

– In-order completion

• Design Methodology

• Performance Analysis

Review Summary
• Performance
• Program dependences
• Pipelining
• Technology challenges
• Superscalar

– Instruction flow: fetch alignment, branch prediction,
decoding

– Register data flow: renaming, issuing

– Memory data flow: load bypassing, forwarding,
speculation, speculative disambiguation

• Basic memory hierarchy
• Pentium Pro case study

Readings 1
• Introduction & Technology Challenges & Pipelining

– Shen & Lipasti, Chapter 1 and Chapter 2.

– 2015 ITRS Update [PDF] (other). Read Section 1, 5, 6, 8, 9,
and skim the rest.

– Shekhar Borkar, “Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation,” IEEE Micro 2005,
November/December 2005 (Vol. 25, No. 6) pp. 10-16.

– Jacobson, H, et al., “Stretching the limits of clock-gating
efficiency in server-class processors,” in Proceedings of
HPCA-11, 2005.

– J. E. Smith. An Analysis of Pipeline Clocking, University of
Wisconsin-Madison ECE Unpublished Note, March 1990.

88

http://ece752.ece.wisc.edu/papers/itrs2015execsummary.pdf

Readings 2
• Superscalar Processors

– Shen & Lipasti Chapter 4, 5, 9

– J. E. Smith. A Study of Branch Prediction
Strategies, Proceedings of the 8th Annual
Symposium on Computer Architecture, pp. 135-
148, May 1981 (B4).

– T-Y. Yeh and Y. Patt. Two-level Adaptive Training
Branch Prediction, Proc. 24th Annual International
Symposium on Microarchitecture, Nov 1991 (B4).

89

Readings 3

• Superscalar Processors

– D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. The
IBM System/360 model 91: Machine Philosophy and
Instruction-Handling, IBM Journal of Research and
Development, Jan. 1967 (B4).

– J. E. Smith and A. R. Pleszkun. Implementing Precise
Interrupts in Pipelined Processors, IEEE Trans. on
Computers, May 1988 (B4).

– Y. N. Patt, W. W. Hwu, and M Shebanow. HPS, a New
Microarchitecture: Rationale and introduction,
Proceedings of the 18th Workshop on Microprogramming,
Pacific Grove, CA, pp. 103-108, Dec. 1985 (B4).

90

Readings 4

• Superscalar Processors cont’d

– Gurindar S. Sohi and S. Vajapeyam. Instruction
Issue Logic for High-Performance, Interruptible,
Multiple Functional Unit, Pipelined Computers,
Proc. 14th Annual Symposium in Computer
Architecture, June 1987 (B4)

– Borch, E., Tune, E., Manne, S., and Emer, J. Loose
Loops Sink Chips. In Proceedings of HPCA-8,

91

Readings 6

• Case Studies

– Shen/Lipasti Ch. 6-7: read, Ch 8 (skim)

– G. F. Grohoski. Machine Organization of the IBM RISC
System/6000 Processor, IBM Journal of Research and
Development, 34(1):37-58, 1990 (B4).

– Kenneth C. Yeager. The MIPS R10000 Superscalar
Microprocessor, IEEE Micro, April 1996 (B4).

– K. Czechowski, V. Lee, E. Grochowski, R. Ronen, R. Singhal,
R. Vuduc, P. Dubey. Improving the Energy Efficiency of Big
Cores. Proceeding of ISCA-14, June 2014.

92

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6853219

