Prefetching

Prof. Mikko H. Lipasti University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen and Mark Hill Updated by Mikko Lipasti

Prefetching

- Even "demand fetching" prefetches other words in block
 - Spatial locality
- Prefetching is useless
 - Unless a prefetch costs less than demand miss
- Ideally, prefetches should
 - Always get data before it is referenced
 - Never get data not used
 - Never prematurely replace data
 - Never interfere with other cache activity

Software Prefetching

- Use compiler to try to
 - Prefetch early
 - Prefetch accurately
- Prefetch into
 - Register (binding)
 - Use normal loads? Stall-on-use (Alpha 21164)
 - What about page faults? Exceptions?
 - Caches (non-binding) preferred
 - Needs ISA support

Software Prefetching

• For example:

```
do j= 1, cols
```

```
do ii = 1 to rows by BLOCK
```

```
prefetch (&(x[i,j])+BLOCK) # prefetch one block
ahead
```

```
do i = ii to ii + BLOCK-1
```

```
sum = sum + x[i,j]
```

- How many blocks ahead should we prefetch?
 - Affects timeliness of prefetches
 - Must be scaled based on miss latency

Hardware Prefetching

- What to prefetch
 - One block spatially ahead
 - N blocks spatially ahead
 - Based on observed stride, track/prefetch multiple strides
- Training hardware prefetcher
 - On every reference (expensive)
 - On every miss (information loss)
 - Misses at what level of cache?
 - Prefetchers at every level of cache?
- Pressure for nonblocking miss support (MSHRs)

Prefetching for Pointer-based Data Structures

- What to prefetch
 - Next level of tree: n+1, n+2, n+?
 - Entire tree? Or just one path
 - Next node in linked list: n+1, n+2, n+?
 - Jump-pointer prefetching
- How to prefetch
 - Software places jump pointers in data structure
 - Hardware scans blocks for pointers
 - Content-driven data prefetching

Stream or Prefetch Buffers

- Prefetching causes capacity and conflict misses (pollution)
 - Can displace useful blocks
- Aimed at compulsory and capacity misses
- Prefetch into buffers, NOT into cache
 - On miss start filling stream buffer with successive lines
 - Check both cache and stream buffer
 - Hit in stream buffer => move line into cache (promote)
 - Miss in both => clear and refill stream buffer
- Performance
 - Very effective for I-caches, less for D-caches
 - Multiple buffers to capture multiple streams (better for D-caches)
- Can use with any prefetching scheme to avoid pollution

Example: Global History Buffer

- K. Nesbit, J. Smith, "Prefetching using a global history buffer", HPCA 2004.
 - [slides from conference talk follow]
- Hardware prefetching scheme
- Monitors miss stream
- Learns correlations
- Issues prefetches for likely next address

Markov Prefetching

- Markov prefetching forms address correlations
 - Joseph and Grunwald (ISCA '97)
- Uses global memory addresses as states in the Markov graph
- Correlation Table *approximates* Markov graph

Miss Address Stream A B C A B C B C . . .

Markov Graph

Correlation Prefetching

- Distance Prefetching forms *delta* correlations
 - Kandiraju and Sivasubramaniam (ISCA '02)
- Delta-based prefetching leads to much smaller table than "classical" Markov Prefetching
- Delta-based prefetching can remove compulsory misses

Global History Buffer (GHB)

- Holds miss address history in FIFO order
- Linked lists within GHB connect related addresses
 - Same static load
 - Same global miss address
 - Same global delta
- Linked list walk is short compared with L2 miss latency

Global History Buffer

GHB - Example

Miss Address Stream 27 28 29 27 28 29 27 28 29 27 28 29 28 **29**

GHB – Deltas

Miss Address Stream 27 28 36 44 45 49 53 54 62 70 <u>71</u> Global Delta Stream 1 8 8 1 4 4 1 8 8 **1**

GHB – Hybrid Delta

- Width prefetching suffers from poor accuracy and short look-ahead
- Depth prefetching has good look-ahead, but may miss prefetch opportunities when a number of "next" addresses have similar probability
- The hybrid method combines depth and width

February 2004

Summary

- Prefetching anticipates future memory references
 - Software prefetching
 - Next-block, stride prefetching
 - Global history buffer prefetching
- Issues/challenges
 - Accuracy
 - Timeliness
 - Overhead (bandwidth)
 - Conflicts (displace useful data)