Pentium Pro Case Study

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen
Updated by Mikko Lipasti
Pentium Pro Case Study

• **Microarchitecture**
 – Order-3 Superscalar
 – Out-of-Order execution
 – Speculative execution
 – In-order completion

• **Design Methodology**

• **Performance Analysis**

• **Retrospective**
Goals of P6 Microarchitecture

IA-32 Compliant

Performance (Frequency - IPC)

Validation

Die Size

Schedule

Power
P6 – The Big Picture

Reservation Station (20)

Fetch (4 Cycles)

Decode (2 Cycles)

Allocation (2 Cycles)

Dispatch

BTB/ICU

BAC/Rename

Immediate

AGU1

AGU0

MOB

DCU

IEU0

IEU1

JEU

Fadd

Fmul

Imul

Div

ROB (40x157)

RRF

2 cyc
• Level 1 instruction and data caches - 2 cycle access time
• Level 2 unified cache - 6 cycle access time
• Separate level 2 cache and memory address/data bus
Instruction Fetch

- Stream Buffer
- ICache (8Kb)
- Victim Cache
- Instruction TLB
- Branch Target Buffer (512) 2 cycle
- Branch Target Buffer (512)
- Instruction Data Mux 16 bytes
- Inst. Length Decoder
- Instruction Data 16 bytes + marks
- Inst. Rotator
- To Decode
- Inst. Buf
- Pattern History Table (PHT) is not speculatively updated
- A speculative Branch History Register (BHR) and prediction state is maintained
- Uses speculative prediction state if it exist for that branch
Branch Prediction Algorithm

- Current prediction updates the speculative history prior to the next instance of the branch instruction
- Branch History Register (BHR) is updated during branch execution
- Branch recovery flushes front-end and drains the execution core
- Branch mis-prediction resets the speculative branch history state to match BHR
Branch instruction detection

Branch address calculation - Static prediction and branch always execution

One branch decode per cycle (break on branch)
- Instruction Buffer contains up to 16 instructions, which must be decoded and queued before the instruction buffer is re-filled.
- Macro-instructions must shift from decoder 2 to decoder 1 to decoder 0.
What is a uop?

Small two-operand instruction - Very RISC like.

IA-32 instruction

 add (eax),(ebx) MEM(eax) <- MEM(eax) + MEM(ebx)

Uop decomposition:

 ld guop0, (eax) guop0 <- MEM(eax)
 ld guop1, (ebx) guop1 <- MEM(ebx)
 add guop0,guop1 guop0 <- guop0 + guop1
 sta eax
 std guop0 MEM(eax) <- guop0
Instruction Dispatch

Register Renaming

Allocation requirements

“3-or-none” Reorder buffer entries
Reservation station entry
Load buffer or store buffer entry

Dispatch buffer “probably” dispatches all 3 uops before re-fill
Register Renaming - 1

Similar to Tomasulo’s Algorithm - Uses ROB entry number as tags

The register alias tables (RAT) maintain a pointer to the most recent data for the renamed register

Execution results are stored in the ROB
Register Renaming - Example

Real Register File (RRF)
- EAX
- EBX
- ECX
- FST0
- FST1
- GuoP0
- GuoP1
- IuoP(0-3)
- CC/Events

Integer RAT
- EAX
- EBX
- ECX
- FST0
- FST1
- GuoP0
- GuoP1

Floating Point RAT
- FST0
- FST1
- FST2
- FST7

Reorder Buffer (ROB)
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 39

Dispatching:
- add eax, ebx
- add eax, ecx
- fxch f0, fl

Completing:
- sub eax, ecx
Challenges to Register Renaming

Real Register File (RRF)

EAX
EBX
ECX

Floating Point RAT

FST0
FST1

GuoP0
GuoP1

IuoP(0-3)

CC/Events

8-bit code

mov AL, #data1
mov AH, #data2
add AL, #data3
add AL, #data4

Byte addressable registers
Out-of-Order Execution Engine

- In-order branch issue and execution
- In-order load/store issue to address generation units
- Instruction execution and result bus scheduling
- Is the reservation station “truly” centralized & what is “binding”?
Reservation Station

- **Cycle 1**
 - Order checking
 - Operand availability

- **Cycle 2**
 - Writeback bus scheduling
Memory Ordering Buffer (MOB)

- Load buffer retains loads until completed, for coherency checking
- Store forwarding out of store buffers
- 2 cycle latency through MOB
- “Store Coloring” - Load instructions are tagged by the last store
Instruction Completion

• Handles all exception/interrupt/trap conditions
• Handles branch recovery
 – OOO core drains out right-path instructions, commits to RRF
 – In parallel, front end starts fetching from target/fall-through
 – However, no renaming is allowed until OOO core is drained
 – After draining is done, RAT is reset to point to RRF
 – Avoids checkpointing RAT, recovering to intermediate RAT state
• Commits execution results to the architectural state in-order
 – Retirement Register File (RRF)
 – Must handle hazards to RRF (writes/reads in same cycle)
 – Must handle hazards to RAT (writes/reads in same cycle)
• “Atomic” IA-32 instruction completion
 – uops are marked as 1st or last in sequence
 – exception/interrupt/trap boundary
• 2 cycle retirement
Pentium Pro Performance Analysis

• **Observability**
 – On-chip event counters
 – Dynamic analysis

• **Benchmark Suite**
 – BAPco Sysmark32 - 32-bit Windows NT applications
 – Winstone97 - 32-bit Windows NT applications
 – Some SPEC95 benchmarks
Performance – Run Times

User-Mode Processor Cycles

Total of 27.5 billion cycles
Performance – IPC vs. uPC

Instructions and Uops retired per cycle

2 uops/instruction
Performance – IPC vs. uPC

Inst. or Uops retired per cycle

Percent of Cycles where n=0-3 UOPSs or instructions were Retired

Percent of Cycles where n=0-3 UOPs or instructions were Retired

AVS
PageMaker
Paradox
PowerPoint
WordPro

3 UCPs
2 UCPs
1 UCP
0 UCPs
3 Inst.
2 Inst.
1 Inst.
0 Inst.
Performance – Cache Misses

Cache Misses Per Cycle

IL1 - 0.51%
DL1 - 1.15%
L2 - 0.25%
Performance – Branch Prediction

Branch Mispredict Rate

6.8% avg

BTB Miss Rate
Conclusions

IA-32 Compliant

Performance (Frequency - IPC)

- 366.0 ISpec92
- 283.2 FSpec92
- 8.09 SPECint95
- 6.70 SPECfp95

Validation

Die Size - Fabable
Schedule - 1 year late
Power -
Retrospective

• Most commercially successful microarchitecture in history

• Evolution

 – Pentium II/III, Xeon, etc.
 • Derivatives with on-chip L2, ISA extensions, etc.
 – Replaced by Pentium 4 as flagship in 2001
 • High frequency, deep pipeline, extreme speculation
 – Resurfaced as Pentium M in 2003
 • Initially a response to Transmeta in laptop market
 • Pentium 4 derivative (90nm Prescott) delayed, slow, hot
 – Core Duo, Core 2 Duo, Core i7 replaced Pentium 4
Microarchitectural Updates

- Pentium M (Banias), Core Duo (Yonah)
 - Micro-op fusion (also in AMD K7/K8)
 - Multiple uops in one: (add eax,[mem] => ld/alu), sta/std
 - These uops decode/dispatch/commit once, issue twice
 - Better branch prediction
 - Loop count predictor
 - Indirect branch predictor
 - Slightly deeper pipeline (12 stages)
 - Extra decode stage for micro-op fusion
 - Extra stage between issue and execute (for RS/PLRAM read)
- Data-capture reservation station (payload RAM)
 - Clock gated for 32 (int), 64 (fp), and 128 (SSE) operands
Microarchitectural Updates

• Core 2 Duo (Merom)
 – 64-bit ISA from AMD K8
 – Macro-op fusion
 • Merge uops from two x86 ops
 • E.g. cmp, jne => cmpjne
 – 4-wide decoder (Complex + 3x Simple)
 • Peak x86 decode throughput is 5 due to macro-op fusion
 – Loop buffer
 • Loops that fit in 18-entry instruction queue avoid fetch/decode overhead
 – Even deeper pipeline (14 stages)
 – Larger reservation station (32), instruction window (96)
 – Memory dependence prediction
Microarchitectural Updates

• Nehalem (Core i7/i5/i3)
 – RS size 36, ROB 128
 – Loop cache up to 28 uops
 – L2 branch predictor
 – L2 TLB
 – I$ and D$ now 32K, L2 back to 256K, inclusive L3 up to 8M
 – Simultaneous multithreading
 – RAS now renamed (repaired)
 – 6 issue, 48 load buffers, 32 store buffers
 – New system interface (QPI) – finally dropped front-side bus
 – Integrated memory controller (up to 3 channels)
 – New STTNI instructions for string/text handling
Microarchitectural Updates

- Sandybridge/Ivy Bridge (2nd-3rd generation Core i7)
 - On-chip integrated graphics (GPU)
 - Decoded uop cache up to 1.5K uops, handles loops, but more general
 - 54-entry RS, 168-entry ROB
 - Physical register file: 144 FP, 160 integer
 - 256-bit AVX units: 8 DPFLOP/cycle, 16 SPFLOP/cycle
 - 2 general AGUs enable 2 ld/cycle, 2 st/cycle or any combination, 2x128-bit load path from L1 D$
Microarchitectural Updates

- Haswell/Broadwell/Skylake: wider & deeper
 - 8-wide issue (up from 6 wide)
 - 4th integer ALU, third AGU, second branch unit
 - 60-entry RS, 192-entry ROB
 - 72-entry load queue/42-entry store queue
 - Physical register file: 168 FP, 168 integer
 - Doubled FP throughput (32 SP/16 DP)
 - Load/store bandwidth to L1 doubled (64B/32B)
 - TSX (transactional memory)
 - Integrated voltage regulator