
Advanced Caches
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

Lecture notes based on notes by John P. Shen and Mark Hill
Updated by Mikko Lipasti

Readings
• Read on your own:

– Review: Shen & Lipasti Chapter 3
– W.-H. Wang, J.-L. Baer, and H. M. Levy. “Organization of a two-level virtual-real cache

hierarchy,” Proc. 16th ISCA, pp. 140-148, June 1989 (B6) Online PDF
– Read Sec. 1, skim Sec. 2, read Sec. 3: Bruce Jacob, “The Memory System: You Can't Avoid

It, You Can't Ignore It, You Can't Fake It,” Synthesis Lectures on Computer Architecture
2009 4:1, 1-77. Online PDF

• To be discussed in class:
– Review #1 due 11/1/2017: Andreas Sembrant, Erik Hagersten, David Black-Schaffer, “The

Direct-to-Data (D2D) cache: navigating the cache hierarchy with a single lookup,” Proc.
ISCA 2014, June 2014.. Online PDF

– Review #2 due 11/3/2017: Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman
P. Jouppi. 2013. Kiln: closing the performance gap between systems with and without
persistence support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 421-432. Online
PDF

– Review #3 due 11/6/2017: T. Shaw, M. Martin, A. Roth, “NoSQ: Store-Load
Communication without a Store Queue,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006. Online PDF

2

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Beyond simple blocks

• Two level caches

Coherent Memory Interface

Coherent Memory Interface
• Load Queue

– Tracks inflight loads for aliasing, coherence

• Store Queue
– Defers stores until commit, tracks aliasing

• Storethrough Queue or Write Buffer or Store Buffer
– Defers stores, coalesces writes, must handle RAW

• MSHR
– Tracks outstanding misses, enables lockup-free caches [Kroft ISCA 91]

• Snoop Queue
– Buffers, tracks incoming requests from coherent I/O, other processors

• Fill Buffer
– Works with MSHR to hold incoming partial lines

• Writeback Buffer
– Defers writeback of evicted line (demand miss handled first)

Evaluation Methods - Counters

• Counts hits and misses in hardware

– see [Clark, TOCS 1983]

– Intel VTune tool

• Accurate

• Realistic workloads - system, user, everything

• Requires machine to exist

• Hard to vary cache parameters

• Experiments not deterministic

Evaluation Methods - Analytical
• Mathematical expressions

– Insight - can vary parameters
– Fast
– Absolute accuracy suspect for models with few

parameters
– Hard to determine many parameter values
– Not widely used today

Evaluation: Trace-Driven Simulation

program input data

execute and trace

discard output
trace file

run cache simulator

 input
cache parameters

compute effective access from miss ratio
repeat
as needed

input tcache, tmiss

Evaluation: Trace-Driven Simulation

• Experiments repeatable
• Can be accurate
• Much recent progress
• Reasonable traces are very large ~gigabytes
• Simulation can be time consuming
• Hard to say if traces representative
• Don’t model speculative execution

Evaluation: Execution-Driven Simulation

• Do full processor simulation each time
– Actual performance; with ILP miss rate means nothing

• Non-blocking caches

• Prefetches (timeliness)

• Pollution effects due to speculation

– No need to store trace

– Much more complicated simulation model

• Time-consuming - but good programming can
help

• Very common today

Trace/Execution Sampling
• We always sample:

• Even entire programs aren’t what the end user is running

• Sampling in space
• Set sampling: monitor only a subset of cache sets

• Sampling in time
• Cold start concerns

• Choosing representative interval: where, how long, how many?

• Simpoints [Sherwood et al. ASPLOS 02]
• Offline phase analysis to choose one or more intervals that are cumulatively

representative of the whole program

• SMARTS [Wenisch et al., ISCA 2003]
• Detailed simulation in short bursts

• Alternate with fast, functional simulation that keeps caches/predictors warm

Simpoints [Sherwood et al. ASPLOS 02]

© Shen, Lipasti 12

Simpoints [Sherwood et al. ASPLOS 02]

© Shen, Lipasti 13

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Beyond simple blocks

• Two level caches

Seznec’s Skewed Associative Cache

• Alleviates conflict misses in a conventional set assoc cache

• If two addresses conflict in 1 bank, they conflict in the others too
– e.g., 3 addresses with same index bits will thrash in 2-way cache

• Solution: use different hash functions for each bank

• Works reasonably well: more robust conflict miss behavior

• But: how do you implement replacement policy?

Address

Hash0

Hash1

Jouppi’s Victim Cache
• Targeted at conflict misses
• Victim cache: a small fully associative cache

– holds victims replaced in direct-mapped or low-assoc

– LRU replacement

– a miss in cache + a hit in victim cache

• => move line to main cache

• Poor man’s associativity
– Not all sets suffer conflicts; provide limited capacity for conflicts

Address

Hash0

Jouppi’s Victim Cache
• Removes conflict misses, mostly useful for DM or 2-way

– Even one entry helps some benchmarks

– I-cache helped more than D-cache

• Versus cache size
– Generally, victim cache helps more for smaller caches

• Versus line size
– helps more with larger line size (why?)

• Used in Pentium Pro (P6) I-cache to handle SMC

Address

Hash0

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Beyond simple blocks

• Two level caches

Software Restructuring
• If column-major (Fortran)

– x[i+1, j] follows x [i,j] in memory

– x[i,j+1] long after x[i,j] in memory

• Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

• Conversely, if row-major (C/C++)

• Poor code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]
C

on
tig

uo
us

 a
dd

re
ss

es

Contiguous addresses

Software Restructuring
• Better column-major code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

• Optimizations - need to check if it
is valid to do them
– Loop interchange (used above)

– Blocking

– Etc.

• Hard: pointers, indirection,
unknown loop bounds, sparse
matrices

C
on

tig
uo

us
 a

dd
re

ss
es

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Beyond simple blocks

• Two level caches

Sublines

• Break blocks into
– Address block associated with tag

– Transfer block to/from memory (subline, sub-block)

• Large address blocks
– Decrease tag overhead

– But allow fewer blocks to reside in cache (fixed mapping)

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Sublines
• Larger transfer block

– Exploit spatial locality

– Amortize memory latency

– But take longer to load

– Replace more data already cached (more conflicts)

– Cause unnecessary traffic

• Typically used in large L3/L4/DRAM caches
• Sublines tracked by MSHR during pending fill

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Latency vs. Bandwidth
• Latency can be handled by

– Hiding (or tolerating) it - out of order issue, nonblocking
cache

– Reducing it – better caches

• Parallelism helps to hide latency
– MLP – multiple outstanding cache misses overlapped

• But increases bandwidth demand

• Latency ultimately limited by physics

Latency vs. Bandwidth
• Bandwidth can be handled by “spending” more (hardware cost)

– Wider buses, interfaces

– Banking/interleaving, multiporting

• Ignoring cost, a well-designed system should never be bandwidth-limited

– Can’t ignore cost!

• Bandwidth improvement usually increases latency

– No free lunch

• Hierarchies decrease bandwidth demand to lower levels

– Serve as traffic filters: a hit in L1 is filtered from L2

• Parallelism puts more demand on bandwidth

• If average b/w demand is not met => infinite queues

– Bursts are smoothed by queues

• If burst is much larger than average => long queue

– Eventually increases delay to unacceptable levels

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Beyond simple blocks

• Multilevel caches

Multilevel Caches

• Ubiquitous in high-performance processors
– Gap between L1 (core frequency) and main memory too high

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip

• Inclusion in multilevel caches
– Multi-level inclusion holds if L2 cache is superset of L1

– Can handle virtual address synonyms

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop

– Makes L1 writes simpler

• For both write-through and write-back

Multilevel Inclusion

• Example: local LRU not sufficient to guarantee
inclusion
– Assume L1 holds two and L2 holds three blocks

– Both use local LRU

• Final state: L1 contains 1, L2 does not
– Inclusion not maintained

• Different block sizes also complicate inclusion

P 1
4

2
3
4

1,2,1,3,1,4 1,2,3,4

Multilevel Inclusion

• Inclusion takes effort to maintain
– Make L2 cache have bits or pointers giving L1 contents

– Invalidate from L1 before replacing from L2

– In example, removing 1 from L2 also removes it from L1

• Number of pointers per L2 block
– L2 blocksize/L1 blocksize

• Reading list: [Wang, Baer, Levy ISCA 1989]

P 1
4

2
3
4

1,2,1,3,1,4 1,2,3,4

Multilevel Miss Rates

• Miss rates of lower level caches
– Affected by upper level filtering effect

– LRU becomes LRM, since “use” is “miss”

– Can affect miss rates, though usually not important

• Miss rates reported as:
– Miss per instruction

– Global miss rate

– Local miss rate

– “Solo” miss rate

• L2 cache sees all references (unfiltered by L1)

Advanced Memory Hierarchy
• Coherent Memory Interface

• Evaluation methods

• Better miss rate: skewed associative caches, victim caches

• Reducing miss costs through software restructuring

• Beyond simple blocks

• Multilevel caches

	Advanced Caches�ECE/CS 752 Fall 2017
	Readings
	Advanced Memory Hierarchy
	Coherent Memory Interface
	Coherent Memory Interface
	Evaluation Methods - Counters
	Evaluation Methods - Analytical
	Evaluation: Trace-Driven Simulation
	Evaluation: Trace-Driven Simulation
	Evaluation: Execution-Driven Simulation
	Trace/Execution Sampling
	Simpoints [Sherwood et al. ASPLOS 02]
	Simpoints [Sherwood et al. ASPLOS 02]
	Advanced Memory Hierarchy
	Seznec’s Skewed Associative Cache
	Jouppi’s Victim Cache
	Jouppi’s Victim Cache
	Advanced Memory Hierarchy
	Software Restructuring
	Software Restructuring
	Advanced Memory Hierarchy
	Sublines
	Sublines
	Latency vs. Bandwidth
	Latency vs. Bandwidth
	Advanced Memory Hierarchy
	Multilevel Caches
	Multilevel Inclusion
	Multilevel Inclusion
	Multilevel Miss Rates
	Advanced Memory Hierarchy

