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Instruction Flow Techniques

• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch
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Goal and Impediments

• Goal of Instruction Flow
– Supply processor with maximum number of useful

instructions every clock cycle

• Impediments
– Branches and jumps
– Finite I-Cache

• Capacity
• Bandwidth restrictions
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Branch Types and 
Implementation

1. Types of Branches
A. Conditional or Unconditional
B. Save PC?
C. How is target computed?

• Single target (immediate, PC+immediate)
• Multiple targets (register)

2. Branch Architectures
A. Condition code or condition registers
B. Register
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Presenter
Presentation Notes
REVIEW - SKIP3-typle that describes branch typeSingle target – fixed range, easy to computeMultiple targets – flexible, could be tough to compute



What’s So Bad About Branches?

• Effects of Branches
– Fragmentation of I-Cache lines
– Need to determine branch direction
– Need to determine branch target
– Use up execution resources

• Pipeline drain/fill
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REVIEW - SKIPDirection: T/NT, -> condition resolution which is data dependentTarget: generate address, fetch, potentially data dependentExecution: wastes slots throughout pipeline if not filled at top



What’s So Bad About Branches?
Problem: Fetch stalls until direction is determined
Solutions:
• Minimize delay

– Move instructions determining branch condition away 
from branch (CC architecture)

• Make use of delay
– Non-speculative: 

• Fill delay slots with useful safe instructions
• Execute both paths (eager execution)

– Speculative:
• Predict branch direction
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REVIEW - SKIPMinimize: condition code architectureSpeculate: Fetch-Decode-Dispatch-Execute: keep pipeline full of speculative instructions



What’s So Bad About Branches?

Problem: Fetch stalls until branch target is determined
Solutions:
• Minimize delay

– Generate branch target early
• Make use of delay: Predict branch target

– Single target
– Multiple targets
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REVIEW - SKIPMinimize: extra adder, simpler addressing modes (MIPS, Alpha), special-purpose registers (CTR, LR in PowerPC) read earlyMultiple: Return address stack, bl-push, blr-pop (draw picture of stack)Finite size, overflow, underflowWhat other cause for multiple targets? Virtual function calls—empirically still have most common target, but do cause problems



Control Dependences

• Control Flow Graph
– Shows possible paths of control flow through basic 

blocks

BB 1

BB 2

BB 3 BB 4

BB 5

             main:
           addi r2, r0, A   
           addi r3, r0, B   
           addi r4, r0, C      BB 1
           addi r5, r0, N   
           add  r10,r0, r0  
           bge  r10,r5, end 
     loop:
           lw   r20, 0(r2)  
           lw   r21, 0(r3)     BB 2
           bge  r20,r21,T1  
           sw   r21, 0(r4)     BB 3
           b    T2              
     T1:                    
           sw   r20, 0(r4)     BB 4
     T2:
           addi r10,r10,1   
           addi r2, r2, 4   
           addi r3, r3, 4      BB 5
           addi r4, r4, 4   
           blt  r10,r5, loop
     end: 
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Control Dependences

• Control Dependence
– Node B is CD on Node A if A determines whether B executes
– If path 1 from A to exit includes B, and path 2 does not, then 

B is control-dependent on A

BB 1

BB 2

BB 3 BB 4

BB 5

             main:
           addi r2, r0, A   
           addi r3, r0, B   
           addi r4, r0, C      BB 1
           addi r5, r0, N   
           add  r10,r0, r0  
           bge  r10,r5, end 
     loop:
           lw   r20, 0(r2)  
           lw   r21, 0(r3)     BB 2
           bge  r20,r21,T1  
           sw   r21, 0(r4)     BB 3
           b    T2              
     T1:                    
           sw   r20, 0(r4)     BB 4
     T2:
           addi r10,r10,1   
           addi r2, r2, 4   
           addi r3, r3, 4      BB 5
           addi r4, r4, 4   
           blt  r10,r5, loop
     end: 
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Presentation Notes
Basic block boundaries determined by: after branch or before label (branch target); the two don’t always coincide (i.e. BB3 starts without label, BB5 starts without branch)Graph theory: if all paths from A to exit include B (or exclude B), there is no control dependence: (A & B are control independent)If some path from A to exit includes B, and some other path does not, B is control dependent on ADraw CD edges from BB1 to {BB2,BB3,BB4,BB5}; from BB2 to {BB3, BB4}; from BB5 to {BB2, BB3, BB4, BB5}



Program Control Flow
• Implicit Sequential Control Flow

– Static Program Representation
• Control Flow Graph (CFG)
• Nodes = basic blocks
• Edges = Control flow transfers

– Physical Program Layout
• Mapping of CFG to linear program memory
• Implied sequential control flow

– Dynamic Program Execution
• Traversal of the CFG nodes and edges (e.g. loops)
• Traversal dictated by branch conditions

– Dynamic Control Flow
• Deviates from sequential control flow
• Disrupts sequential fetching
• Can stall IF stage and reduce I-fetch bandwidth

Presenter
Presentation Notes
Draw simple CFG, map to sequential, write “branch instr. deviates from implied sequential control flow”



Program Control Flow
• Dynamic traversal of 

static CFG
• Mapping CFG to linear 

memory

Presenter
Presentation Notes
Show common path as loop on left



Limits on Instruction Level 
Parallelism (ILP)

Weiss and Smith [1984] 1.58
Sohi and Vajapeyam [1987] 1.81
Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)
Tjaden and Flynn [1973] 1.96
Uht [1986] 2.00
Smith et al. [1989] 2.00
Jouppi and Wall [1988] 2.40
Johnson [1991] 2.50
Acosta et al. [1986] 2.79
Wedig [1982] 3.00
Butler et al. [1991] 5.8
Melvin and Patt [1991] 6
Wall [1991] 7 (Jouppi disagreed)
Kuck et al. [1972] 8
Riseman and Foster [1972] 51 (no control dependences)
Nicolau and Fisher [1984] 90 (Fisher’s optimism)
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1970: Flynn

Presenter
Presentation Notes
Flynn’s bottleneck: within basic block, idealizedJohnson 1991:Caches, general-purpose UNIX, realistic, NT branches double scope over FlynnRiseman and Foster: next slideNicolau/Fisher: Scientific: unroll loops, many taken branches, data parallelism, nested loops, led to VLIW (Multiflow)



Riseman and Foster’s Study
• 7 benchmark programs on CDC-3600
• Assume infinite machines

– Infinite memory and instruction stack
– Infinite register file
– Infinite functional units
– True dependencies only at dataflow limit

• If bounded to single basic block, speedup is 1.72 
(Flynn’s bottleneck)

• If one can bypass n branches (hypothetically), then:

Branches
Bypassed

0 1 2 8 32 128 ∞

Speedup 1.72 2.72 3.62 7.21 14.8 24.4 51.2
Mikko Lipasti-University of Wisconsin 14

1970: Flynn
1972: Riseman/Foster

Presenter
Presentation Notes
Infinite: factor out other issues; controlled experiment, find limit or upper boundSpeedups are: 1.72, 2.72, 3.62, 7.21, 14.8, 24.4, 51.2Must get past branches to get ILPPredated branch prediction (seems obvious in retrospect)
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Branch Prediction

• Riseman & Foster showed potential
– But no idea how to reap benefit

• 1979: Jim Smith patents branch 
prediction at Control Data
– Predict current branch based on past 

history

• Today: virtually all processors use 
branch prediction

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor



Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode
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Reorder/

Store Buffer
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Finish
Completion Buffer

Branch
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REVIEW - SKIPPenalty (increased lost opportunity cost): 1) target addr. Generation, 2) condition resolutionSketch Tyranny of Amdahl’s Law pipeline diagram



Branch Prediction

• Target address generation → Target Speculation
– Access register: 

• PC, General purpose register, Link register
– Perform calculation: 

• +/- offset, autoincrement, autodecrement

• Condition resolution → Condition speculation
– Access register:

• Condition code register, General purpose register
– Perform calculation:

• Comparison of data register(s)

Mikko Lipasti-University of Wisconsin 17

Presenter
Presentation Notes
REVIEW - SKIPNon-CC architecture requires actual computation to resolve condition



Target Address Generation
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Condition Resolution
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Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)
PC(seq.)Branch

Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

  FA-mux
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Branch/Jump Target Prediction

• Branch Target Buffer: small cache in fetch stage
– Previously executed branches, address, taken history, target(s)

• Fetch stage compares current FA against BTB
– If match, use prediction
– If predict taken, use BTB target

• When branch executes, BTB is updated
• Optimization:

– Size of BTB: increases hit rate
– Prediction algorithm: increase accuracy of prediction

Branch inst.  Information   Branch target
address         for predict.     address (most recent)

0x0348 0101 (NTNT) 0x0612
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Branch Prediction: Condition Speculation
1. Biased Not Taken

– Hardware prediction
– Does not affect ISA
– Not effective for loops

2. Software Prediction
– Extra bit in each branch instruction

• Set to 0 for not taken
• Set to 1 for taken

– Bit set by compiler or user; can use profiling
– Static prediction, same behavior every time

3. Prediction based on branch offset
– Positive offset: predict not taken
– Negative offset: predict taken

4. Prediction based on dynamic history
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PowerPC ‘y’ bit: slight twistIBM Fortran anecdote: programmers got this wrongBTFN: if-then-else are 50/50 quite often, loop usually taken



UCB Study [Lee and Smith, 1984]
• Benchmarks used

– 26 programs (IBM 370, DEC PDP-11, CDC 6400)
– 6 workloads (4 IBM, 1 DEC, 1 CDC)
– Used trace-driven simulation

• Branch types
– Unconditional: always taken or always not taken
– Subroutine call: always taken
– Loop control: usually taken
– Decision: either way, if-then-else
– Computed goto: always taken, with changing target
– Supervisor call: always taken
– Execute: always taken (IBM 370)

IBM1 IBM2 IBM3 IBM4 DEC CDC Avg
T 0.640 0.657 0.704 0.540 0.738 0.778 0.676
NT 0.360 0.343 0.296 0.460 0.262 0.222 0.324

IBM1: compiler
IBM2: cobol (business app)

IBM3: scientific
IBM4: supervisor (OS)
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Presentation Notes
Bottom-up hacking => no scienceComputed goto: C++ virtual fn callsExecute: mini subroutine call (ouch)IBM1-4: compiler, cobol, scientific, supervisor



Branch Prediction Function
• Prediction function F(X1, X2, … )

– X1 – opcode type
– X2 – history

• Prediction effectiveness based on opcode only, or history

IBM1 IBM2 IBM3 IBM4 DEC CDC
Opcode only 66 69 71 55 80 78
History 0 64 64 70 54 74 78
History 1 92 95 87 80 97 82
History 2 93 97 91 83 98 91
History 3 94 97 91 84 98 94
History 4 95 97 92 84 98 95
History 5 95 97 92 84 98 96
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F > 0.5 => pred TF <= 0.5 => pred NTDraw line under 2, diminishing returns



Example Prediction Algorithm

• Hardware table remembers last 2 branch outcomes
– History of past several branches encoded by FSM
– Current state used to generate prediction

• Results:

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

Branch inst.    Information   Branch target
address                       for predict.    address

Workload IBM1 IBM2 IBM3 IBM4 DEC CDC
Accuracy 93 97 91 83 98 91
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Subdivide state machine into T (3 states) vs. NT (1 state); highlight prediction and state namesDraw FSM logic under “Info” column



IBM Study [Nair, 1992]
• Branch processing on the IBM RS/6000

– Separate branch functional unit
– Overlap of branch instructions with other 

instructions
• Zero cycle branches

– Two causes for branch stalls
• Unresolved conditions
• Branches downstream too close to unresolved 

branches

• Investigated optimal FSM design for 
branch prediction
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Explain zero-cycle branches: if CC is known, and target can be computed and fetched (eager fetch), can have 0 pipeline delay



Exhaustive Search for Optimal 2-bit Predictor
• There are 220 possible state machines of 2-bit predictors

– Some machines are uninteresting, pruning them out reduces the number of state 
machines to 5248

• For each benchmark, determine prediction accuracy for all the 
predictor state machines

– Find optimal 2-bit predictor for each application
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Spice2g6  - weirdDoduc, gcc, espresso – countersLi, eqntott – near countersWrite in counter values – 97.0, 94.3, 89.1, 89.1, 86.8, 87.2



Branch Prediction Implementation (PPC 604)

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

to I-cache

FA (fetch address)
FABranch 

Predictor

Spec. target

Prediction
  FA-mux

SFX SFX CFX FPU LSBRN

 Buffer

Branch
Predictor
Update
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BTAC and BHT Design (PPC 604)

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

FA

Branch Target
Address Cache

  FA
-m

ux

Branch History
Table (BHT)

BTAC 

BHT 

SFX SFX CFX FPU LSBRN

 Buffer

(BTAC)

I-cache

update

update

FA FA

FA
R

+4

BTAC prediction 

BHT prediction 

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
  history based prediction
- overrides BTAC prediction
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Fast (one cycle) and slow (two cycle) predictorsBTAC: provides target address and condition (if hit) with fast turnaround; equivalent to single-bit history for conditionBHT: provides 2-bit counters for better history/hysteresis



Branch Speculation

• Start new correct path
– Must remember the alternate (non-predicted) path

• Eliminate incorrect path
– Must ensure that the mis-speculated instructions 

produce no side effects

NT T NT T NT TNT T

NT T NT T

NT T

(TAG 2)

(TAG 3) (TAG 1)
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Mis-speculation Recovery

• Start new correct path
1. Update PC with computed branch target (if predicted 

NT)
2. Update PC with sequential instruction address (if 

predicted T)
3. Can begin speculation again at next branch

• Eliminate incorrect path
1. Use tag(s) to deallocate ROB entries occupied by 

speculative instructions
2. Invalidate all instructions in the decode and dispatch 

buffers, as well as those in reservation stations
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REVIEW - SKIPDraw simple CFG, map to sequential, write branch instr. Deviates from implied sequential control flow



Tracking Instructions

• Assign branch tags
– Allocated in circular order
– Instruction carries this tag throughout 

processor
• Often: track instruction groups

– Instructions managed in groups, max. one 
branch per group

– ROB structured as groups
• Leads to some inefficiency
• Simpler tracking of speculative instructions
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Alpha 21264, Power 4 (PowerPC 970) use this approach: ROB group has up to 4 instructions x 16 groups (21264) or up to 5 instructions x 20 groups (PowerPC 970)



BTAC and BHT Design (PPC 604)
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Fairly simple, 5-
stage machine 
from 1994

Many sources 
for PC redirect

Lots of 
complexity

Presenter
Presentation Notes
BTAC predictionBHT predictionBranch on count register (loops) executed early PC+disp branch target and condition computedExceptions detected at completionMany sources for next fetch address!



Instruction Flow Techniques

• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch
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Static Branch Prediction

• Single-direction
– Always not-taken: Intel i486

• Backwards Taken/Forward Not Taken
– Loop-closing branches
– Used as backup in Pentium Pro, II, III, 4

• Heuristic-based:
void * p = malloc (numBytes);
if (p == NULL)

errorHandlingFunction( );
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Static Branch Prediction
Heuristic 
Name Description 

Loop Branch If the branch target is back to the head of a loop, predict taken. 

Pointer If a branch compares a pointer with NULL, or if two pointers are compared, predict in the 
direction that corresponds to the pointer being not NULL, or the two pointers not being equal. 

Opcode If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a 
constant, predict in the direction that corresponds to the test evaluating to false. 

Guard If the operand of the branch instruction is a register that gets used before being redefined in the 
successor block, predict that the branch goes to the successor block. 

Loop Exit If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the 
branch does not go to the successor that is the loop exit. 

Loop Header Predict that the successor block of a branch that is a loop header or a loop pre-header is taken. 

Call If a successor block contains a subroutine call, predict that the branch goes to that successor 
block. 

Store If a successor block contains a store instruction, predict that the branch does not go to that 
successor block. 

Return If a successor block contains a return from subroutine instruction, predict that the branch does 
not go to that successor block. 
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• Heuristic-based: Ball/Larus
– Thomas Ball and James R. Larus.  Branch Prediction for Free.  ACM SIGPLAN Symposium 

on Principles and Practice of Parallel Programming, pages 300-313, May 1993.



Static Branch Prediction

• Profile-based
1. Instrument program binary
2. Run with representative (?) input set
3. Recompile program

a. Annotate branches with hint bits, or
b. Restructure code to match predict not-taken

• Best performance: 75-80% accuracy
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Dynamic Branch Prediction

• Main advantages:
– Learn branch behavior autonomously

• No compiler analysis, heuristics, or profiling
– Adapt to changing branch behavior

• Program phase changes branch behavior

• First proposed in 1979-1980
– US Patent  #4,370,711, Branch predictor using 

random access memory, James. E. Smith
• Continually refined since then

Mikko Lipasti-University of Wisconsin 38



Smith Predictor Hardware

• Jim E. Smith.  A Study of Branch Prediction Strategies.  International 
Symposium on Computer Architecture, pages 135-148, May 1981

• Widely employed: Intel Pentium, PowerPC 604, PowerPC 620, etc.

Branch Address

Branch Prediction

m

2m k-bit  counters

most significant bit

Saturating Counter
Increment/Decrement

Branch Outcome

Updated Counter  Value
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Two-level Branch Prediction

• BHR adds global branch history
– Provides more context
– Can differentiate multiple instances of the same static branch
– Can correlate behavior across multiple static branches

BHR
0110

PC = 01011010010101

010110

000000
000001
000010
000011

010100
010101
010110
010111

111110
111111

PHT

 1 0

1   Branch Prediction
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Two-level Prediction: Local History

• Detailed local history can be useful

110

PC = 01011010010101

0101110

0000000
0000001
0000010
0000011

0101100
0101101
0101110
0101111

0111110
0111111

PHT

 0  1

0   Branch Prediction

000
001
010
011
100
101
110
111

BHT
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Analogy from Ch. 9: driving, turn left at this intersection 5 days a week to get to work, but Sat/Sun turn right to go the mall?  Local history for that intersection will be able to differentiate these cases.



Local History Predictor Example

• Loop closing 
branches
– Must identify 

last instance
• Local history 

dedicates PHT 
entry to each 
instance
– ‘0111’ entry 

predicts not 
taken

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHTLoop closing branch’s history
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Good for loops with low iteration counts- High iteration count: little benefit from predicting the exit (Amdahl’s law)



Two-level Taxonomy
• Based on indices for branch history 

and pattern history
– BHR: {G,P,S}: {Global, Per-address, Set}
– PHT: {g,p,s}: {Global, Per-address, Set}
– 9 combinations: GAg, GAp, GAs, PAg, 

PAp, PAs, SAg, SAp and SAs
• Tse-Yu Yeh and Yale N. Patt.  Two-Level 

Adaptive Branch Prediction.  
International Symposium on 
Microarchitecture, pages 51-61, 
November 1991.
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction



Index Sharing in Two-level Predictors

• Use XOR function to achieve better utilization of PHT
• Scott McFarling.  Combining Branch Predictors.  TN-36, 

Digital Equipment Corporation Western Research 
Laboratory, June 1993.

• Used in e.g. IBM Power 4, Alpha 21264

1101

0110

GAp

BHR

PC
1001

1001

1010

BHR

PC
1001

gshare

BHR
PC

1101
0110

1011XOR

BHR
PC

1001
1010

0011XOR

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament



Sources of Mispredictions
• Lack of history (training time)
• Randomized behavior

– Usually due to randomized input data (benchmarks)
– Surprisingly few branches depend on input data 

values
• BHR capacity

– Correlate to branch that already shifted out
– E.g. loop count > BHR width

• PHT capacity
– Aliasing/interference

• Positive
• Negative
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Reducing Interference
• Compulsory aliasing (cold miss)

– Not important (less than 1%)
– Only remedy is to set appropriate initial value
– Also: beware indexing schemes with high training 

cost (e.g. very long branch history)

• Capacity aliasing (capacity miss)
– Increase PHT size

• Conflict aliasing (conflict miss)
– Change indexing scheme or partition PHT in a 

clever fashion
Mikko Lipasti-University of Wisconsin 46



Bi-Mode Predictor

• PHT partitioned into T/NT halves
– Selector chooses source

• Reduces negative interference, since most entries in PHT0 tend 
towards NT, and most entries in PHT1 tend towards T

• Used by ARM Cortex-A15

Bra nch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor
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gskewed Predictor

• Multiple PHT banks indexed by different hash functions
– Conflicting branch pair unlikely to conflict in more than one PHT

• Majority vote determines prediction
• Used in Alpha EV8 (ultimately cancelled)
• P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in 

Conditional Branch Predictors. ISCA-24, June 1997

Branch Address

Global BHR

f0

f1

f2

Ma jority

Final Prediction

PHT0 PHT1 PHT2
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Agree Predictor

• Same principle as bi-mode
• PHT records whether branch bias matches outcome

– Exploits 70-80% static predictability
• Used in HP PA-8700
• E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt.  The Agree 

Predictor: A Mechanism for Reducing Negative Branch History 
Interference. ISCA-24, June 1997.

Branch Address

Global BHR

XOR
Prediction

PHT

biasing bits

1
0

1 = agree with bias bit
0 = disagree
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SKIP for timeWhere do you get biasing bits?  Compiler can provide hint, or simply use BTFN



YAGS Predictor

• Based on bi-mode
– T/NT PHTs cache 

only the exceptions
• A. N. Eden and T. N. Mudge.  

The YAGS Branch Prediction 
Scheme.  MICRO, Dec 1998.

Branch Address

Global BHR
XOR

Partial Tag 2bC Partial Tag 2bC

 = =

0 1 0 1

0 1

Final Prediction

choice
PHT

T-cache NT-cache

T/NT-cache hit?
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament

1998: Cache exceptions

Presenter
Presentation Notes
Simplification of bi-mode: choice PHT covers common case



Branch Confidence Estimation

• Limit speculation (energy), reverse predictions, 
guide fetch for multithreaded processors, choose 
best prediction

• Q Jacobson, E Rotenberg, and JE Smith.  Assigning 
Confidence to Conditional Branch Predictions.  
MICRO, December 1996.

Branch Address

Global BHR XOR Table of CIRs

Reduction
Function

Confidence
Prediction
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation

1998: Cache exceptions



Dynamic History Length
• Branch history length:

– Some prefer short history (less training time)
– Some require longer history (complex behavior)

• Vary history length
– Choose through profile/compile-time hints
– Or learn dynamically

• References
– Maria-Dana Tarlescu, Kevin B. Theobald, and Guang R. 

Gao.  Elastic History Buffer: A Low-Cost Method to 
Improve Branch Prediction Accuracy.  ICCD, October 
1996.

– Toni Juan, Sanji Sanjeevan, and Juan J. Navarro.  Dynamic 
History-Length Fitting: A Third Level of Adaptivity for 
Branch Prediction.  ISCA, June 1998.

– Jared Stark, Marius Evers, and Yale N. Patt.  Variable Path 
Branch Prediction.  ACM SIGPLAN Notices, 33(11):170-
179, 1998
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions



Loop Count Predictors

• To predict last loop iteration’s NT branch:
– Must have length(BHR) > loop count
– Not feasible for large loop counts

• Instead, BHR has mode bit
– Once history == ‘111…11’ or ‘000…00’ switch to count mode
– Now nth entry in PHT trains to NT and predicts nth iteration as last 

one
– Now length(BHR) > log2(loop count) is sufficient

• Used in Intel Pentium M/Core Duo/ Core 2 Duo

History/CountH/C

BHR entry:

Mode bit:
H – history
C – count

“1”
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Path History

• Sometimes T/NT history is not enough
• Path history (PC values) can help

if (y == 0)

    goto C;

if (y == 5)

    goto C;

if (y < 12)

    goto D;

if (y % 2)

    goto E;

History = T History = T

History = TT

A B

C

DPath ACD:

Branch Address = X

Branch History = TT

Branch Outcome = Not Taken

Path BCD:

Branch Address = X

Branch History = TT

Branch Outcome = Taken
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Understanding Advanced Predictors
• Four types of history

– Local (bimodal) history (Smith predictor)
• Table of counters summarizes local history
• Simple, but only effective for biased branches

– Local outcome history (correlate with self)
• Shift register of individual branch outcomes
• Separate counter for each outcome history (M-F vs Sat/Sun)

– Global outcome history (correlate with others)
• Shift register of recent branch outcomes
• Separate counter for each outcome history

– Path history (overcomes CFG convergence aliasing)
• Shift register of recent (partial) block addresses
• Can differentiate similar global outcome histories

• Can combine histories in many ways
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Understanding Advanced Predictors

• History length
– Short history—lower training cost
– Long history—captures macro-level behavior
– Variable history length predictors

• Really long history (long loops)
– Loop count predictors
– Fourier transform into frequency domain

• Kampe et. al, “The FAB Predictor…”, HPCA 2002
• Limited capacity & interference

– Constructive vs. destructive
– Bi-mode, gskewed, agree, YAGS
– Sec. 9.3.2 provides good overview
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Perceptron Branch Prediction

[Jimenez, Lin HPCA 2001]
• Perceptron

– Basis in AI concept [1962]
– Computes boolean result based on 

multiple weighted inputs
• Adapted for branch prediction

– xi from branch history (1 T, -1 NT)
– wi incremented whenever branch 

outcome matches xi
– Finds correlation between current branch 

and any subset of prior branches

n

y = w0 + ∑ xi wi
i=1
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor



Perceptrons - Implementation
• Complex dot product must 

be computed for every 
prediction
– Too slow

• Arithmetic tricks, pipelining:
– Daniel A. Jimenez and Calvin 

Lin. Neural methods for 
dynamic branch prediction. 
ACM Transactions on 
Computer Systems, 20(4):369–
397, November 2002.

– Analog circuit implementation 
also possible

• Amant, Jimenez, Burger, 
MICRO 2008

• Key insights: 
– Not all branches in history are 

important, weights learn this
– Long histories are useful

Mikko Lipasti-University of Wisconsin
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Practical Neural Predictors

• Approximate dot product function with 
precomputed responses

• Update (inc/dec) response based on outcomes
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feature
response

feature
response

feature
response

feature
response

feature
response

Practical Neural Predictors

• Many possible features (local, global, path, …)
• Responses updated based on neuron-like model
• Threshold tuned and/or updated
• Recent designs from AMD, Samsung claim “neural predictor”

– This slide is my best guess as to what that means

• Some hints: “Multiperspective Perceptron Predictor,” Daniel 
Jimenez, CPB-5, ISCA 2016.
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Overriding Predictors
• Different types of history

– E.g. Bimodal, Local, Global (BLG)

• Different history lengths
• How to choose?

– Metapredictor/selector? Expensive, slow to train

• Tag match with most sophisticated predictor entry
– Parallel tag check with B, L, G, long-history G
– Choose most sophisticated prediction
– Fancy predictors only updated when simple ones fail
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Prediction by Partial Matching

[P. Michaud, CBP-1 2004, JILP 2005]
• Elegant approach for choosing from several 

predictors, based on PPM data compression 
• Partial tags like YAGS, varying history lengths
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM



Current State of the Art
• Key concepts

– Different history types (B,L,G)
– Geometric series history lengths

• Some branches prefer short, others long
• Use geometric series [Seznec, CBP-1, O-

GEHL]

– Cache only exceptions (YAGS/PPM)
– Confidence estimation [Jacobson et al, MICRO 

1996]

• Tagged Geometric History Length 
(TAGE)
– A. Seznec, P. Michaud, “A case for (partially) tagged 

Geometric History Length Branch Prediction”, Journal 
of Instruction Level Parallelism , Feb. 2006
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

2006: TAGE

http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf


TAGE Predictor

• Multiple tagged tables, use different global 
history lengths

• Set of history lengths forms a geometric series
{0, 2, 4, 8, 16, 32, 64, 128, 256, …, 2048}

64

most of the storage 
for short history !!

Mikko Lipasti-University of Wisconsin
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Tagged Geometric History Length (TAGE)

• Longest matching table provides the prediction, subject to branch confidence
65

hash

PC h[0 - L3]
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=?

pred tag

PC h[0 - L2]h[0 - L1]PCPC

prediction

GHR(h)
L1 L2 L3

- - - - - - - - -
0

=? =?

pred tag pred tag

hash hash

HitHit Miss
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TAGE
• Tweaks to basic concept still win CBP-6

– 1st place: TAGE-SC-L
– 2nd place: Perceptron+TAGE hybrid 

• State of the art, but…
– Rumors of real implementation
– Very energy-intensive (parallel lookups)
– Complex update rules

• Real opportunity exists for 
improvement
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

2006: TAGE

2016: Still TAGE vs Neural



TAGE vs. Neural
• Neural: ARM, AMD, Samsung
• TAGE: Intel, ???
• Similarity

– Many sources or “features”

• Key difference: how to combine them
– TAGE: Override via partial match
– Neural: integrate + threshold

• Every CBP is a cage match
– Seznec vs. Jimenez
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1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

2006: TAGE

2016: Still TAGE vs Neural



Instruction Flow Techniques

• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch
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Branch Target Prediction

• Partial tags sufficient in BTB

Branch Address

Branch ...target tag target tag target tag

  =   =   =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target
0 1
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Return Address Stack

• Speculative update causes headaches
– On each predicted branch, checkpoint head/tail
– Further, checkpoint stack contents since speculative pop/push 

sequence is destructive
– Conditional call/return causes more headaches

Bra nch Address

Size of
Instruction

BTB

Target Prediction

Return
Address

BTB

Target Prediction
is this a return?

Bra nch Address

(a) (b)
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Indirect Branches

• Tagged target cache
– Chang et. al, Target Prediction for Indirect Jumps, ISCA 

1997
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Indirect Branches
• ITTAGE proposed in same 2006 paper as TAGE

– A. Seznec, P. Michaud, “A case for (partially) tagged Geometric History Length Branch 
Prediction”, Journal of Instruction Level Parallelism , Feb. 2006

72Mikko Lipasti-University of Wisconsin
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Indirect Branches

• CPB-3 had an indirect prediction track
• #1: A. Seznec, A 64-Kbytes ITTAGE indirect branch predictor, MPPKI 

34.1

• #2: Y. Ishii, T. Sawada, K. Kuroyanagi, M. Inaba, K. Hiraki, Bimode 
Cascading: Adaptive Rehashing for ITTAGE Indirect Branch Predictor, 
MPPKI 37.0

• #3: N. Bhansali, C. Panirwala, H. Zhou, Exploring Correlation for 
Indirect Branch Prediction, MPPKI 51.6

• #4: Daniel A. Jimenez, SNIP: Scaled Neural Indirect Predictor, MPPKI
52.9
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High-Bandwidth Fetch: Collapsing Buffer

• Fetch from two cache blocks, rotate, collapse past taken branches
• Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills and Burzin A. Patel.  

Optimization of Instruction Fetch Mechanisms for High Issue Rates.  
International Symposium on Computer Architecture, June 1995.

Branch A ddress Interleaved BTB

Cache
Bank 1

Cache
Bank 2

Two cache line addresses

 E   F   G  H A    B  C   D

 E   F   G  H
 A   B  C   D

Interchange Switch

Collapsing Circuit

Valid
Instruction
Bits

 G A    B  C   E To Decode Stage
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High-Bandwidth Fetch: Trace Cache

• Fold out taken branches by tracing instructions as they 
commit into a fill buffer

• Eric Rotenberg, S. Bennett, and James E. Smith.  Trace 
Cache: A Low Latency Approach to High Bandwidth 
Instruction Fetching.  MICRO, December 1996.

A B
C

D

E F G
H  I J

A B C D E F G H  I J

Instruction Cache

Trace Cache

(a) (b)
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Intel Pentium 4 Trace Cache

• No first-level instruction cache: trace cache only
• Trace cache BTB identifies next trace
• Miss leads to fetch from level two cache
• Trace cache instructions are decoded (uops)
• Cache capacity 12k uops

– Overwhelmed for database applications
– Serial decoder becomes performance bottleneck

Trace CacheTrace Cache BTB

Instruct ion Decode

Instruction TLB
and Prefetcher

Front-End BTB Level-Two
Unified Data and
Instruction Cache

Ins truction Fetch Queue

To renamer, execute, etc.
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High-Bandwidth Fetch: Loop Buffers

• History: AMD29K Branch Target Cache
– Don’t cache the target address; cache 4 instructions from the target itself
– Avoid accessing I$ for first fetch group following a taken branch
– If loop body is <= 4 instructions, effectively a loop cache
– Room for 32/64 branch targets

• Also common in DSP designs, under s/w control (e.g. 
Lucent)

• Introduced in Intel Merom (Core 2 Duo)
– Fetch buffer detects short backward branches, inhibits refetch from I$

• Intel Nehalem (Core i7)
– Moved loop buffer after decoders: contains uops

• Intel Sandybridge
– General-purpose uop cache (not just loops)
– 1.5K capacity

bc

Loop Body Fetch/Decode/
Dispatch Buffer
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High Frequency: Next-line Prediction

• Embed next fetch address in instruction cache
– Enables high-frequency back-to-back fetch

• Brad Calder and Dirk Grunwald.  Next Cache Line and Set 
Prediction.  International Symposium on Computer 
Architecture, pages 287-296, June 1995.

2A  B  C  D

6E  F  G  H

tag

 tag

Target Prediction Target Prediction

 =
Next line
misprediction

Tag check for
cycle 1’s lookup

Cycle 1 Cycle 2

next line
prediction

I  J  K  L

Cycle 3

 =

Tag check for
cycle 2’s  lookup

Target Pred
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High Frequency: Overriding Predictors

• Simple, fast predictor turns around every cycle
• Smarter, slower predictor can override
• Widely used: PowerPC 604, 620, Alpha 21264

Small, Fast
Predictor

Instruction
Cache

Slow Overriding
Predictor

Stage 1

Stage 2

Stage 3

Pre dict A Predic t A

Fetch A Pre dict A

Fetch
Queue

Predict B Predict B

Fetch B Predic t B

Predict C Predict C

Queue A Predic t A

If slow pre dict agrees with fast predict, do nothing
If pre dictions do not match, f lush A, B, and C,
   a nd resta rt fetch at new predicted target

Cycle 1 Cycle 2 Cycle 3
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Instruction Flow Summary
• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch
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