
Instruction Flow Techniques
ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti
University of Wisconsin-Madison

High-IPC Processor

Mikko Lipasti-University of Wisconsin 2

I-cache

FETCH

DECODE

COMMIT
D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Instruction Flow Techniques

• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch

Mikko Lipasti-University of Wisconsin 3

Goal and Impediments

• Goal of Instruction Flow
– Supply processor with maximum number of useful

instructions every clock cycle

• Impediments
– Branches and jumps
– Finite I-Cache

• Capacity
• Bandwidth restrictions

Mikko Lipasti-University of Wisconsin 4

Branch Types and
Implementation

1. Types of Branches
A. Conditional or Unconditional
B. Save PC?
C. How is target computed?

• Single target (immediate, PC+immediate)
• Multiple targets (register)

2. Branch Architectures
A. Condition code or condition registers
B. Register

Mikko Lipasti-University of Wisconsin 5

Presenter
Presentation Notes
REVIEW - SKIP3-typle that describes branch typeSingle target – fixed range, easy to computeMultiple targets – flexible, could be tough to compute

What’s So Bad About Branches?

• Effects of Branches
– Fragmentation of I-Cache lines
– Need to determine branch direction
– Need to determine branch target
– Use up execution resources

• Pipeline drain/fill

Mikko Lipasti-University of Wisconsin 6

Presenter
Presentation Notes
REVIEW - SKIPDirection: T/NT, -> condition resolution which is data dependentTarget: generate address, fetch, potentially data dependentExecution: wastes slots throughout pipeline if not filled at top

What’s So Bad About Branches?
Problem: Fetch stalls until direction is determined
Solutions:
• Minimize delay

– Move instructions determining branch condition away
from branch (CC architecture)

• Make use of delay
– Non-speculative:

• Fill delay slots with useful safe instructions
• Execute both paths (eager execution)

– Speculative:
• Predict branch direction

Mikko Lipasti-University of Wisconsin 7

Presenter
Presentation Notes
REVIEW - SKIPMinimize: condition code architectureSpeculate: Fetch-Decode-Dispatch-Execute: keep pipeline full of speculative instructions

What’s So Bad About Branches?

Problem: Fetch stalls until branch target is determined
Solutions:
• Minimize delay

– Generate branch target early
• Make use of delay: Predict branch target

– Single target
– Multiple targets

Mikko Lipasti-University of Wisconsin 8

Presenter
Presentation Notes
REVIEW - SKIPMinimize: extra adder, simpler addressing modes (MIPS, Alpha), special-purpose registers (CTR, LR in PowerPC) read earlyMultiple: Return address stack, bl-push, blr-pop (draw picture of stack)Finite size, overflow, underflowWhat other cause for multiple targets? Virtual function calls—empirically still have most common target, but do cause problems

Control Dependences

• Control Flow Graph
– Shows possible paths of control flow through basic

blocks

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

Mikko Lipasti-University of Wisconsin 9

Control Dependences

• Control Dependence
– Node B is CD on Node A if A determines whether B executes
– If path 1 from A to exit includes B, and path 2 does not, then

B is control-dependent on A

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

Mikko Lipasti-University of Wisconsin 10

Presenter
Presentation Notes
Basic block boundaries determined by: after branch or before label (branch target); the two don’t always coincide (i.e. BB3 starts without label, BB5 starts without branch)Graph theory: if all paths from A to exit include B (or exclude B), there is no control dependence: (A & B are control independent)If some path from A to exit includes B, and some other path does not, B is control dependent on ADraw CD edges from BB1 to {BB2,BB3,BB4,BB5}; from BB2 to {BB3, BB4}; from BB5 to {BB2, BB3, BB4, BB5}

Program Control Flow
• Implicit Sequential Control Flow

– Static Program Representation
• Control Flow Graph (CFG)
• Nodes = basic blocks
• Edges = Control flow transfers

– Physical Program Layout
• Mapping of CFG to linear program memory
• Implied sequential control flow

– Dynamic Program Execution
• Traversal of the CFG nodes and edges (e.g. loops)
• Traversal dictated by branch conditions

– Dynamic Control Flow
• Deviates from sequential control flow
• Disrupts sequential fetching
• Can stall IF stage and reduce I-fetch bandwidth

Presenter
Presentation Notes
Draw simple CFG, map to sequential, write “branch instr. deviates from implied sequential control flow”

Program Control Flow
• Dynamic traversal of

static CFG
• Mapping CFG to linear

memory

Presenter
Presentation Notes
Show common path as loop on left

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58
Sohi and Vajapeyam [1987] 1.81
Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)
Tjaden and Flynn [1973] 1.96
Uht [1986] 2.00
Smith et al. [1989] 2.00
Jouppi and Wall [1988] 2.40
Johnson [1991] 2.50
Acosta et al. [1986] 2.79
Wedig [1982] 3.00
Butler et al. [1991] 5.8
Melvin and Patt [1991] 6
Wall [1991] 7 (Jouppi disagreed)
Kuck et al. [1972] 8
Riseman and Foster [1972] 51 (no control dependences)
Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Mikko Lipasti-University of Wisconsin 13

1970: Flynn

Presenter
Presentation Notes
Flynn’s bottleneck: within basic block, idealizedJohnson 1991:Caches, general-purpose UNIX, realistic, NT branches double scope over FlynnRiseman and Foster: next slideNicolau/Fisher: Scientific: unroll loops, many taken branches, data parallelism, nested loops, led to VLIW (Multiflow)

Riseman and Foster’s Study
• 7 benchmark programs on CDC-3600
• Assume infinite machines

– Infinite memory and instruction stack
– Infinite register file
– Infinite functional units
– True dependencies only at dataflow limit

• If bounded to single basic block, speedup is 1.72
(Flynn’s bottleneck)

• If one can bypass n branches (hypothetically), then:

Branches
Bypassed

0 1 2 8 32 128 ∞

Speedup 1.72 2.72 3.62 7.21 14.8 24.4 51.2
Mikko Lipasti-University of Wisconsin 14

1970: Flynn
1972: Riseman/Foster

Presenter
Presentation Notes
Infinite: factor out other issues; controlled experiment, find limit or upper boundSpeedups are: 1.72, 2.72, 3.62, 7.21, 14.8, 24.4, 51.2Must get past branches to get ILPPredated branch prediction (seems obvious in retrospect)

Mikko Lipasti-University of Wisconsin 15

Branch Prediction

• Riseman & Foster showed potential
– But no idea how to reap benefit

• 1979: Jim Smith patents branch
prediction at Control Data
– Predict current branch based on past

history

• Today: virtually all processors use
branch prediction

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish
Completion Buffer

Branch

Mikko Lipasti-University of Wisconsin 16

Presenter
Presentation Notes
REVIEW - SKIPPenalty (increased lost opportunity cost): 1) target addr. Generation, 2) condition resolutionSketch Tyranny of Amdahl’s Law pipeline diagram

Branch Prediction

• Target address generation → Target Speculation
– Access register:

• PC, General purpose register, Link register
– Perform calculation:

• +/- offset, autoincrement, autodecrement

• Condition resolution → Condition speculation
– Access register:

• Condition code register, General purpose register
– Perform calculation:

• Comparison of data register(s)

Mikko Lipasti-University of Wisconsin 17

Presenter
Presentation Notes
REVIEW - SKIPNon-CC architecture requires actual computation to resolve condition

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Mikko Lipasti-University of Wisconsin
18

Presenter
Presentation Notes
REVIEW - SKIPDecode: PC = PC + DISP (adder) (1 cycle penalty)Dispatch: PC = (R2) (2 cycle penalty)Execute: PC = (R2) + offset (3 cycle penalty)Both cond & uncondGuess target address? Keep history based on branch address

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Mikko Lipasti-University of Wisconsin 19

Presenter
Presentation Notes
REVIEW - SKIPDispatch: RD (2 cycle penalty)Execute: Status (3 cycle penalty)Only cond (not uncond)Guess taken vs. not taken

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)
PC(seq.)Branch

Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

Mikko Lipasti-University of Wisconsin 20

Presenter
Presentation Notes
REVIEW: fast! What it inside the box?Fetch: PC = PC + 4BTB (cache) contains k cycles of history, generates guessExecute: corrects wrong guess

Branch/Jump Target Prediction

• Branch Target Buffer: small cache in fetch stage
– Previously executed branches, address, taken history, target(s)

• Fetch stage compares current FA against BTB
– If match, use prediction
– If predict taken, use BTB target

• When branch executes, BTB is updated
• Optimization:

– Size of BTB: increases hit rate
– Prediction algorithm: increase accuracy of prediction

Branch inst. Information Branch target
address for predict. address (most recent)

0x0348 0101 (NTNT) 0x0612

Mikko Lipasti-University of Wisconsin 21

Presenter
Presentation Notes
Write: 0x0348, 0101 (NTNT), 0x0612

Branch Prediction: Condition Speculation
1. Biased Not Taken

– Hardware prediction
– Does not affect ISA
– Not effective for loops

2. Software Prediction
– Extra bit in each branch instruction

• Set to 0 for not taken
• Set to 1 for taken

– Bit set by compiler or user; can use profiling
– Static prediction, same behavior every time

3. Prediction based on branch offset
– Positive offset: predict not taken
– Negative offset: predict taken

4. Prediction based on dynamic history

Mikko Lipasti-University of Wisconsin 22

Presenter
Presentation Notes
PowerPC ‘y’ bit: slight twistIBM Fortran anecdote: programmers got this wrongBTFN: if-then-else are 50/50 quite often, loop usually taken

UCB Study [Lee and Smith, 1984]
• Benchmarks used

– 26 programs (IBM 370, DEC PDP-11, CDC 6400)
– 6 workloads (4 IBM, 1 DEC, 1 CDC)
– Used trace-driven simulation

• Branch types
– Unconditional: always taken or always not taken
– Subroutine call: always taken
– Loop control: usually taken
– Decision: either way, if-then-else
– Computed goto: always taken, with changing target
– Supervisor call: always taken
– Execute: always taken (IBM 370)

IBM1 IBM2 IBM3 IBM4 DEC CDC Avg
T 0.640 0.657 0.704 0.540 0.738 0.778 0.676
NT 0.360 0.343 0.296 0.460 0.262 0.222 0.324

IBM1: compiler
IBM2: cobol (business app)

IBM3: scientific
IBM4: supervisor (OS)

Mikko Lipasti-University of Wisconsin 23

Presenter
Presentation Notes
Bottom-up hacking => no scienceComputed goto: C++ virtual fn callsExecute: mini subroutine call (ouch)IBM1-4: compiler, cobol, scientific, supervisor

Branch Prediction Function
• Prediction function F(X1, X2, …)

– X1 – opcode type
– X2 – history

• Prediction effectiveness based on opcode only, or history

IBM1 IBM2 IBM3 IBM4 DEC CDC
Opcode only 66 69 71 55 80 78
History 0 64 64 70 54 74 78
History 1 92 95 87 80 97 82
History 2 93 97 91 83 98 91
History 3 94 97 91 84 98 94
History 4 95 97 92 84 98 95
History 5 95 97 92 84 98 96

Mikko Lipasti-University of Wisconsin 24

Presenter
Presentation Notes
F > 0.5 => pred TF <= 0.5 => pred NTDraw line under 2, diminishing returns

Example Prediction Algorithm

• Hardware table remembers last 2 branch outcomes
– History of past several branches encoded by FSM
– Current state used to generate prediction

• Results:

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

Branch inst. Information Branch target
address for predict. address

Workload IBM1 IBM2 IBM3 IBM4 DEC CDC
Accuracy 93 97 91 83 98 91

Mikko Lipasti-University of Wisconsin 25

Presenter
Presentation Notes
Subdivide state machine into T (3 states) vs. NT (1 state); highlight prediction and state namesDraw FSM logic under “Info” column

IBM Study [Nair, 1992]
• Branch processing on the IBM RS/6000

– Separate branch functional unit
– Overlap of branch instructions with other

instructions
• Zero cycle branches

– Two causes for branch stalls
• Unresolved conditions
• Branches downstream too close to unresolved

branches

• Investigated optimal FSM design for
branch prediction

Mikko Lipasti-University of Wisconsin 26

Presenter
Presentation Notes
Explain zero-cycle branches: if CC is known, and target can be computed and fetched (eager fetch), can have 0 pipeline delay

Exhaustive Search for Optimal 2-bit Predictor
• There are 220 possible state machines of 2-bit predictors

– Some machines are uninteresting, pruning them out reduces the number of state
machines to 5248

• For each benchmark, determine prediction accuracy for all the
predictor state machines

– Find optimal 2-bit predictor for each application

Mikko Lipasti-University of Wisconsin 27

Presenter
Presentation Notes
Spice2g6 - weirdDoduc, gcc, espresso – countersLi, eqntott – near countersWrite in counter values – 97.0, 94.3, 89.1, 89.1, 86.8, 87.2

Branch Prediction Implementation (PPC 604)

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

to I-cache

FA (fetch address)
FABranch

Predictor

Spec. target

Prediction
 FA-mux

SFX SFX CFX FPU LSBRN

 Buffer

Branch
Predictor
Update

Mikko Lipasti-University of Wisconsin 28

Presenter
Presentation Notes
REVIEW: go fast

BTAC and BHT Design (PPC 604)

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

FA

Branch Target
Address Cache

 FA
-m

ux

Branch History
Table (BHT)

BTAC

BHT

SFX SFX CFX FPU LSBRN

 Buffer

(BTAC)

I-cache

update

update

FA FA

FA
R

+4

BTAC prediction

BHT prediction

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
 history based prediction
- overrides BTAC prediction

Mikko Lipasti-University of Wisconsin 29

Presenter
Presentation Notes
Fast (one cycle) and slow (two cycle) predictorsBTAC: provides target address and condition (if hit) with fast turnaround; equivalent to single-bit history for conditionBHT: provides 2-bit counters for better history/hysteresis

Branch Speculation

• Start new correct path
– Must remember the alternate (non-predicted) path

• Eliminate incorrect path
– Must ensure that the mis-speculated instructions

produce no side effects

NT T NT T NT TNT T

NT T NT T

NT T

(TAG 2)

(TAG 3) (TAG 1)

Mikko Lipasti-University of Wisconsin 30

Presenter
Presentation Notes
REVIEW - SKIP“squash” on instructions following NT prediction

Mis-speculation Recovery

• Start new correct path
1. Update PC with computed branch target (if predicted

NT)
2. Update PC with sequential instruction address (if

predicted T)
3. Can begin speculation again at next branch

• Eliminate incorrect path
1. Use tag(s) to deallocate ROB entries occupied by

speculative instructions
2. Invalidate all instructions in the decode and dispatch

buffers, as well as those in reservation stations

Mikko Lipasti-University of Wisconsin 31

Presenter
Presentation Notes
REVIEW - SKIPDraw simple CFG, map to sequential, write branch instr. Deviates from implied sequential control flow

Tracking Instructions

• Assign branch tags
– Allocated in circular order
– Instruction carries this tag throughout

processor
• Often: track instruction groups

– Instructions managed in groups, max. one
branch per group

– ROB structured as groups
• Leads to some inefficiency
• Simpler tracking of speculative instructions

Mikko Lipasti-University of Wisconsin 32

Presenter
Presentation Notes
Alpha 21264, Power 4 (PowerPC 970) use this approach: ROB group has up to 4 instructions x 16 groups (21264) or up to 5 instructions x 20 groups (PowerPC 970)

BTAC and BHT Design (PPC 604)

Mikko Lipasti-University of Wisconsin 33

Fairly simple, 5-
stage machine
from 1994

Many sources
for PC redirect

Lots of
complexity

Presenter
Presentation Notes
BTAC predictionBHT predictionBranch on count register (loops) executed early PC+disp branch target and condition computedExceptions detected at completionMany sources for next fetch address!

Instruction Flow Techniques

• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch

Mikko Lipasti-University of Wisconsin 34

Static Branch Prediction

• Single-direction
– Always not-taken: Intel i486

• Backwards Taken/Forward Not Taken
– Loop-closing branches
– Used as backup in Pentium Pro, II, III, 4

• Heuristic-based:
void * p = malloc (numBytes);
if (p == NULL)

errorHandlingFunction();

Mikko Lipasti-University of Wisconsin 35

Static Branch Prediction
Heuristic
Name Description

Loop Branch If the branch target is back to the head of a loop, predict taken.

Pointer If a branch compares a pointer with NULL, or if two pointers are compared, predict in the
direction that corresponds to the pointer being not NULL, or the two pointers not being equal.

Opcode If a branch is testing that an integer is less than zero, less than or equal to zero, or equal to a
constant, predict in the direction that corresponds to the test evaluating to false.

Guard If the operand of the branch instruction is a register that gets used before being redefined in the
successor block, predict that the branch goes to the successor block.

Loop Exit If a branch occurs inside a loop, and neither of the targets is the loop head, then predict that the
branch does not go to the successor that is the loop exit.

Loop Header Predict that the successor block of a branch that is a loop header or a loop pre-header is taken.

Call If a successor block contains a subroutine call, predict that the branch goes to that successor
block.

Store If a successor block contains a store instruction, predict that the branch does not go to that
successor block.

Return If a successor block contains a return from subroutine instruction, predict that the branch does
not go to that successor block.

Mikko Lipasti-University of Wisconsin 36

• Heuristic-based: Ball/Larus
– Thomas Ball and James R. Larus. Branch Prediction for Free. ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 300-313, May 1993.

Static Branch Prediction

• Profile-based
1. Instrument program binary
2. Run with representative (?) input set
3. Recompile program

a. Annotate branches with hint bits, or
b. Restructure code to match predict not-taken

• Best performance: 75-80% accuracy

Mikko Lipasti-University of Wisconsin 37

Dynamic Branch Prediction

• Main advantages:
– Learn branch behavior autonomously

• No compiler analysis, heuristics, or profiling
– Adapt to changing branch behavior

• Program phase changes branch behavior

• First proposed in 1979-1980
– US Patent #4,370,711, Branch predictor using

random access memory, James. E. Smith
• Continually refined since then

Mikko Lipasti-University of Wisconsin 38

Smith Predictor Hardware

• Jim E. Smith. A Study of Branch Prediction Strategies. International
Symposium on Computer Architecture, pages 135-148, May 1981

• Widely employed: Intel Pentium, PowerPC 604, PowerPC 620, etc.

Branch Address

Branch Prediction

m

2m k-bit counters

most significant bit

Saturating Counter
Increment/Decrement

Branch Outcome

Updated Counter Value

Mikko Lipasti-University of Wisconsin 39

Presenter
Presentation Notes
REVIEW - SKIP

Two-level Branch Prediction

• BHR adds global branch history
– Provides more context
– Can differentiate multiple instances of the same static branch
– Can correlate behavior across multiple static branches

BHR
0110

PC = 01011010010101

010110

000000
000001
000010
000011

010100
010101
010110
010111

111110
111111

PHT

 1 0

1 Branch Prediction

Mikko Lipasti-University of Wisconsin 40

Two-level Prediction: Local History

• Detailed local history can be useful

110

PC = 01011010010101

0101110

0000000
0000001
0000010
0000011

0101100
0101101
0101110
0101111

0111110
0111111

PHT

 0 1

0 Branch Prediction

000
001
010
011
100
101
110
111

BHT

Mikko Lipasti-University of Wisconsin 41

Presenter
Presentation Notes
Analogy from Ch. 9: driving, turn left at this intersection 5 days a week to get to work, but Sat/Sun turn right to go the mall? Local history for that intersection will be able to differentiate these cases.

Local History Predictor Example

• Loop closing
branches
– Must identify

last instance
• Local history

dedicates PHT
entry to each
instance
– ‘0111’ entry

predicts not
taken

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHTLoop closing branch’s history

Mikko Lipasti-University of Wisconsin 42

Presenter
Presentation Notes
Good for loops with low iteration counts- High iteration count: little benefit from predicting the exit (Amdahl’s law)

Two-level Taxonomy
• Based on indices for branch history

and pattern history
– BHR: {G,P,S}: {Global, Per-address, Set}
– PHT: {g,p,s}: {Global, Per-address, Set}
– 9 combinations: GAg, GAp, GAs, PAg,

PAp, PAs, SAg, SAp and SAs
• Tse-Yu Yeh and Yale N. Patt. Two-Level

Adaptive Branch Prediction.
International Symposium on
Microarchitecture, pages 51-61,
November 1991.

Mikko Lipasti-University of Wisconsin 43

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction

Index Sharing in Two-level Predictors

• Use XOR function to achieve better utilization of PHT
• Scott McFarling. Combining Branch Predictors. TN-36,

Digital Equipment Corporation Western Research
Laboratory, June 1993.

• Used in e.g. IBM Power 4, Alpha 21264

1101

0110

GAp

BHR

PC
1001

1001

1010

BHR

PC
1001

gshare

BHR
PC

1101
0110

1011XOR

BHR
PC

1001
1010

0011XOR

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Mikko Lipasti-University of Wisconsin 44

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament

Sources of Mispredictions
• Lack of history (training time)
• Randomized behavior

– Usually due to randomized input data (benchmarks)
– Surprisingly few branches depend on input data

values
• BHR capacity

– Correlate to branch that already shifted out
– E.g. loop count > BHR width

• PHT capacity
– Aliasing/interference

• Positive
• Negative

Mikko Lipasti-University of Wisconsin 45

Reducing Interference
• Compulsory aliasing (cold miss)

– Not important (less than 1%)
– Only remedy is to set appropriate initial value
– Also: beware indexing schemes with high training

cost (e.g. very long branch history)

• Capacity aliasing (capacity miss)
– Increase PHT size

• Conflict aliasing (conflict miss)
– Change indexing scheme or partition PHT in a

clever fashion
Mikko Lipasti-University of Wisconsin 46

Bi-Mode Predictor

• PHT partitioned into T/NT halves
– Selector chooses source

• Reduces negative interference, since most entries in PHT0 tend
towards NT, and most entries in PHT1 tend towards T

• Used by ARM Cortex-A15

Bra nch Address

Global BHR

XOR

PHT0 PHT1

Final Prediction

choice
predictor

Mikko Lipasti-University of Wisconsin 47

Presenter
Presentation Notes
REVIEW - SKIP

gskewed Predictor

• Multiple PHT banks indexed by different hash functions
– Conflicting branch pair unlikely to conflict in more than one PHT

• Majority vote determines prediction
• Used in Alpha EV8 (ultimately cancelled)
• P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in

Conditional Branch Predictors. ISCA-24, June 1997

Branch Address

Global BHR

f0

f1

f2

Ma jority

Final Prediction

PHT0 PHT1 PHT2

Mikko Lipasti-University of Wisconsin 48

Agree Predictor

• Same principle as bi-mode
• PHT records whether branch bias matches outcome

– Exploits 70-80% static predictability
• Used in HP PA-8700
• E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The Agree

Predictor: A Mechanism for Reducing Negative Branch History
Interference. ISCA-24, June 1997.

Branch Address

Global BHR

XOR
Prediction

PHT

biasing bits

1
0

1 = agree with bias bit
0 = disagree

Mikko Lipasti-University of Wisconsin 49

Presenter
Presentation Notes
SKIP for timeWhere do you get biasing bits? Compiler can provide hint, or simply use BTFN

YAGS Predictor

• Based on bi-mode
– T/NT PHTs cache

only the exceptions
• A. N. Eden and T. N. Mudge.

The YAGS Branch Prediction
Scheme. MICRO, Dec 1998.

Branch Address

Global BHR
XOR

Partial Tag 2bC Partial Tag 2bC

 = =

0 1 0 1

0 1

Final Prediction

choice
PHT

T-cache NT-cache

T/NT-cache hit?

Mikko Lipasti-University of Wisconsin 50

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament

1998: Cache exceptions

Presenter
Presentation Notes
Simplification of bi-mode: choice PHT covers common case

Branch Confidence Estimation

• Limit speculation (energy), reverse predictions,
guide fetch for multithreaded processors, choose
best prediction

• Q Jacobson, E Rotenberg, and JE Smith. Assigning
Confidence to Conditional Branch Predictions.
MICRO, December 1996.

Branch Address

Global BHR XOR Table of CIRs

Reduction
Function

Confidence
Prediction

Mikko Lipasti-University of Wisconsin 51

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation

1998: Cache exceptions

Dynamic History Length
• Branch history length:

– Some prefer short history (less training time)
– Some require longer history (complex behavior)

• Vary history length
– Choose through profile/compile-time hints
– Or learn dynamically

• References
– Maria-Dana Tarlescu, Kevin B. Theobald, and Guang R.

Gao. Elastic History Buffer: A Low-Cost Method to
Improve Branch Prediction Accuracy. ICCD, October
1996.

– Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic
History-Length Fitting: A Third Level of Adaptivity for
Branch Prediction. ISCA, June 1998.

– Jared Stark, Marius Evers, and Yale N. Patt. Variable Path
Branch Prediction. ACM SIGPLAN Notices, 33(11):170-
179, 1998

Mikko Lipasti-University of Wisconsin 52

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

Loop Count Predictors

• To predict last loop iteration’s NT branch:
– Must have length(BHR) > loop count
– Not feasible for large loop counts

• Instead, BHR has mode bit
– Once history == ‘111…11’ or ‘000…00’ switch to count mode
– Now nth entry in PHT trains to NT and predicts nth iteration as last

one
– Now length(BHR) > log2(loop count) is sufficient

• Used in Intel Pentium M/Core Duo/ Core 2 Duo

History/CountH/C

BHR entry:

Mode bit:
H – history
C – count

“1”

Mikko Lipasti-University of Wisconsin 53

Presenter
Presentation Notes
Increasing loop iteration count => diminishing return in terms of performance benefit (why?)

Path History

• Sometimes T/NT history is not enough
• Path history (PC values) can help

if (y == 0)

 goto C;

if (y == 5)

 goto C;

if (y < 12)

 goto D;

if (y % 2)

 goto E;

History = T History = T

History = TT

A B

C

DPath ACD:

Branch Address = X

Branch History = TT

Branch Outcome = Not Taken

Path BCD:

Branch Address = X

Branch History = TT

Branch Outcome = Taken

Mikko Lipasti-University of Wisconsin 54

Understanding Advanced Predictors
• Four types of history

– Local (bimodal) history (Smith predictor)
• Table of counters summarizes local history
• Simple, but only effective for biased branches

– Local outcome history (correlate with self)
• Shift register of individual branch outcomes
• Separate counter for each outcome history (M-F vs Sat/Sun)

– Global outcome history (correlate with others)
• Shift register of recent branch outcomes
• Separate counter for each outcome history

– Path history (overcomes CFG convergence aliasing)
• Shift register of recent (partial) block addresses
• Can differentiate similar global outcome histories

• Can combine histories in many ways

Mikko Lipasti-University of Wisconsin 55

Understanding Advanced Predictors

• History length
– Short history—lower training cost
– Long history—captures macro-level behavior
– Variable history length predictors

• Really long history (long loops)
– Loop count predictors
– Fourier transform into frequency domain

• Kampe et. al, “The FAB Predictor…”, HPCA 2002
• Limited capacity & interference

– Constructive vs. destructive
– Bi-mode, gskewed, agree, YAGS
– Sec. 9.3.2 provides good overview

Mikko Lipasti-University of Wisconsin 56

Perceptron Branch Prediction

[Jimenez, Lin HPCA 2001]
• Perceptron

– Basis in AI concept [1962]
– Computes boolean result based on

multiple weighted inputs
• Adapted for branch prediction

– xi from branch history (1 T, -1 NT)
– wi incremented whenever branch

outcome matches xi
– Finds correlation between current branch

and any subset of prior branches

n

y = w0 + ∑ xi wi
i=1

Mikko Lipasti-University of Wisconsin 57

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor

Perceptrons - Implementation
• Complex dot product must

be computed for every
prediction
– Too slow

• Arithmetic tricks, pipelining:
– Daniel A. Jimenez and Calvin

Lin. Neural methods for
dynamic branch prediction.
ACM Transactions on
Computer Systems, 20(4):369–
397, November 2002.

– Analog circuit implementation
also possible

• Amant, Jimenez, Burger,
MICRO 2008

• Key insights:
– Not all branches in history are

important, weights learn this
– Long histories are useful

Mikko Lipasti-University of Wisconsin
58

Presenter
Presentation Notes
Large storage requirement (weights)Expensive weighted sum “Compute y”

Practical Neural Predictors

• Approximate dot product function with
precomputed responses

• Update (inc/dec) response based on outcomes
Mikko Lipasti-University of Wisconsin 59

Pr
ec

om
pu

te
d

Re
sp

on
se

PC

BHR
X

> t

“feature”

“response”

feature
response

feature
response

feature
response

feature
response

feature
response

Practical Neural Predictors

• Many possible features (local, global, path, …)
• Responses updated based on neuron-like model
• Threshold tuned and/or updated
• Recent designs from AMD, Samsung claim “neural predictor”

– This slide is my best guess as to what that means

• Some hints: “Multiperspective Perceptron Predictor,” Daniel
Jimenez, CPB-5, ISCA 2016.

Mikko Lipasti-University of Wisconsin 60

> tΣ

feature
response

Overriding Predictors
• Different types of history

– E.g. Bimodal, Local, Global (BLG)

• Different history lengths
• How to choose?

– Metapredictor/selector? Expensive, slow to train

• Tag match with most sophisticated predictor entry
– Parallel tag check with B, L, G, long-history G
– Choose most sophisticated prediction
– Fancy predictors only updated when simple ones fail

Mikko Lipasti-University of Wisconsin 61

Presenter
Presentation Notes
Scott McFarling spent 6 months in his basement, sold it to Intel, didn’t work for six years

Prediction by Partial Matching

[P. Michaud, CBP-1 2004, JILP 2005]
• Elegant approach for choosing from several

predictors, based on PPM data compression
• Partial tags like YAGS, varying history lengths

Mikko Lipasti-University of Wisconsin 62

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

Current State of the Art
• Key concepts

– Different history types (B,L,G)
– Geometric series history lengths

• Some branches prefer short, others long
• Use geometric series [Seznec, CBP-1, O-

GEHL]

– Cache only exceptions (YAGS/PPM)
– Confidence estimation [Jacobson et al, MICRO

1996]

• Tagged Geometric History Length
(TAGE)
– A. Seznec, P. Michaud, “A case for (partially) tagged

Geometric History Length Branch Prediction”, Journal
of Instruction Level Parallelism , Feb. 2006

Mikko Lipasti-University of Wisconsin 63

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

2006: TAGE

http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

TAGE Predictor

• Multiple tagged tables, use different global
history lengths

• Set of history lengths forms a geometric series
{0, 2, 4, 8, 16, 32, 64, 128, 256, …, 2048}

64

most of the storage
for short history !!

Mikko Lipasti-University of Wisconsin

Presenter
Presentation Notes
Most of the storage space of TAGE is spent on the tagged predictor tables that attempts to capture patterns in short histories

Tagged Geometric History Length (TAGE)

• Longest matching table provides the prediction, subject to branch confidence
65

hash

PC h[0 - L3]

B
as

e
Pr

ed
ic

to
r

=?

pred tag

PC h[0 - L2]h[0 - L1]PCPC

prediction

GHR(h)
L1 L2 L3

- - - - - - - - -
0

=? =?

pred tag pred tag

hash hash

HitHit Miss

Mikko Lipasti-University of Wisconsin

Presenter
Presentation Notes
This slides presents the organization of a conventional tage predictor with the base bimodal table and 3 tagged predictor table. These 3 tagged tables are indexed using L1, L2 and L2 recent history bits of the global history register.So here in this example, in case a branch find a tag match in T0 and in T3 and a miss in T2, then T3 will provide the eventual prediction decision since it uses the longest history of L3 to index its table.prediction by the longest history matching entry

TAGE
• Tweaks to basic concept still win CBP-6

– 1st place: TAGE-SC-L
– 2nd place: Perceptron+TAGE hybrid

• State of the art, but…
– Rumors of real implementation
– Very energy-intensive (parallel lookups)
– Complex update rules

• Real opportunity exists for
improvement

Mikko Lipasti-University of Wisconsin 66

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

2006: TAGE

2016: Still TAGE vs Neural

TAGE vs. Neural
• Neural: ARM, AMD, Samsung
• TAGE: Intel, ???
• Similarity

– Many sources or “features”

• Key difference: how to combine them
– TAGE: Override via partial match
– Neural: integrate + threshold

• Every CBP is a cage match
– Seznec vs. Jimenez

Mikko Lipasti-University of Wisconsin 67

1970: Flynn
1972: Riseman/Foster

1979: Smith Predictor

1991: Two-level prediction
1993: gshare, tournament
1996: Confidence estimation
1996: Vary history length
1998: Cache exceptions

2001: Neural predictor
2004: PPM

2006: TAGE

2016: Still TAGE vs Neural

Instruction Flow Techniques

• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch

Mikko Lipasti-University of Wisconsin 68

Branch Target Prediction

• Partial tags sufficient in BTB

Branch Address

Branch ...target tag target tag target tag

 = = =

OR

Branch Target Buffer

 +

Size of
Instruction

Branch Target

BTB Hit?

Direction
Predictor

not-taken
target

taken-target
0 1

Mikko Lipasti-University of Wisconsin 69

Return Address Stack

• Speculative update causes headaches
– On each predicted branch, checkpoint head/tail
– Further, checkpoint stack contents since speculative pop/push

sequence is destructive
– Conditional call/return causes more headaches

Bra nch Address

Size of
Instruction

BTB

Target Prediction

Return
Address

BTB

Target Prediction
is this a return?

Bra nch Address

(a) (b)

Mikko Lipasti-University of Wisconsin 70

Indirect Branches

• Tagged target cache
– Chang et. al, Target Prediction for Indirect Jumps, ISCA

1997

Mikko Lipasti-University of Wisconsin 71

Indirect Branches
• ITTAGE proposed in same 2006 paper as TAGE

– A. Seznec, P. Michaud, “A case for (partially) tagged Geometric History Length Branch
Prediction”, Journal of Instruction Level Parallelism , Feb. 2006

72Mikko Lipasti-University of Wisconsin

http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf

Indirect Branches

• CPB-3 had an indirect prediction track
• #1: A. Seznec, A 64-Kbytes ITTAGE indirect branch predictor, MPPKI

34.1

• #2: Y. Ishii, T. Sawada, K. Kuroyanagi, M. Inaba, K. Hiraki, Bimode
Cascading: Adaptive Rehashing for ITTAGE Indirect Branch Predictor,
MPPKI 37.0

• #3: N. Bhansali, C. Panirwala, H. Zhou, Exploring Correlation for
Indirect Branch Prediction, MPPKI 51.6

• #4: Daniel A. Jimenez, SNIP: Scaled Neural Indirect Predictor, MPPKI
52.9

Mikko Lipasti-University of Wisconsin 73

High-Bandwidth Fetch: Collapsing Buffer

• Fetch from two cache blocks, rotate, collapse past taken branches
• Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills and Burzin A. Patel.

Optimization of Instruction Fetch Mechanisms for High Issue Rates.
International Symposium on Computer Architecture, June 1995.

Branch A ddress Interleaved BTB

Cache
Bank 1

Cache
Bank 2

Two cache line addresses

 E F G H A B C D

 E F G H
 A B C D

Interchange Switch

Collapsing Circuit

Valid
Instruction
Bits

 G A B C E To Decode Stage

Mikko Lipasti-University of Wisconsin 74

High-Bandwidth Fetch: Trace Cache

• Fold out taken branches by tracing instructions as they
commit into a fill buffer

• Eric Rotenberg, S. Bennett, and James E. Smith. Trace
Cache: A Low Latency Approach to High Bandwidth
Instruction Fetching. MICRO, December 1996.

A B
C

D

E F G
H I J

A B C D E F G H I J

Instruction Cache

Trace Cache

(a) (b)

Mikko Lipasti-University of Wisconsin 75

Intel Pentium 4 Trace Cache

• No first-level instruction cache: trace cache only
• Trace cache BTB identifies next trace
• Miss leads to fetch from level two cache
• Trace cache instructions are decoded (uops)
• Cache capacity 12k uops

– Overwhelmed for database applications
– Serial decoder becomes performance bottleneck

Trace CacheTrace Cache BTB

Instruct ion Decode

Instruction TLB
and Prefetcher

Front-End BTB Level-Two
Unified Data and
Instruction Cache

Ins truction Fetch Queue

To renamer, execute, etc.

Mikko Lipasti-University of Wisconsin 76

High-Bandwidth Fetch: Loop Buffers

• History: AMD29K Branch Target Cache
– Don’t cache the target address; cache 4 instructions from the target itself
– Avoid accessing I$ for first fetch group following a taken branch
– If loop body is <= 4 instructions, effectively a loop cache
– Room for 32/64 branch targets

• Also common in DSP designs, under s/w control (e.g.
Lucent)

• Introduced in Intel Merom (Core 2 Duo)
– Fetch buffer detects short backward branches, inhibits refetch from I$

• Intel Nehalem (Core i7)
– Moved loop buffer after decoders: contains uops

• Intel Sandybridge
– General-purpose uop cache (not just loops)
– 1.5K capacity

bc

Loop Body Fetch/Decode/
Dispatch Buffer

Mikko Lipasti-University of Wisconsin 77

High Frequency: Next-line Prediction

• Embed next fetch address in instruction cache
– Enables high-frequency back-to-back fetch

• Brad Calder and Dirk Grunwald. Next Cache Line and Set
Prediction. International Symposium on Computer
Architecture, pages 287-296, June 1995.

2A B C D

6E F G H

tag

 tag

Target Prediction Target Prediction

 =
Next line
misprediction

Tag check for
cycle 1’s lookup

Cycle 1 Cycle 2

next line
prediction

I J K L

Cycle 3

 =

Tag check for
cycle 2’s lookup

Target Pred

Mikko Lipasti-University of Wisconsin 78

High Frequency: Overriding Predictors

• Simple, fast predictor turns around every cycle
• Smarter, slower predictor can override
• Widely used: PowerPC 604, 620, Alpha 21264

Small, Fast
Predictor

Instruction
Cache

Slow Overriding
Predictor

Stage 1

Stage 2

Stage 3

Pre dict A Predic t A

Fetch A Pre dict A

Fetch
Queue

Predict B Predict B

Fetch B Predic t B

Predict C Predict C

Queue A Predic t A

If slow pre dict agrees with fast predict, do nothing
If pre dictions do not match, f lush A, B, and C,
 a nd resta rt fetch at new predicted target

Cycle 1 Cycle 2 Cycle 3

Mikko Lipasti-University of Wisconsin 79

Instruction Flow Summary
• Instruction Flow and its Impediments
• Control Dependences
• Control Flow Speculation

– Branch Speculation
– Mis-speculation Recovery

• Branch Direction Prediction
– Static Prediction
– A brief history of dynamic branch prediction

• Branch Target Prediction
• High-bandwidth Fetch
• High-Frequency Fetch

Mikko Lipasti-University of Wisconsin 80

	Instruction Flow Techniques�ECE/CS 752 Fall 2017
	High-IPC Processor
	Instruction Flow Techniques
	Goal and Impediments
	Branch Types and Implementation
	What’s So Bad About Branches?
	What’s So Bad About Branches?
	What’s So Bad About Branches?
	Control Dependences
	Control Dependences
	Program Control Flow
	Program Control Flow
	Limits on Instruction Level Parallelism (ILP)
	Riseman and Foster’s Study
	Branch Prediction
	Disruption of Sequential Control Flow
	Branch Prediction
	Target Address Generation
	Condition Resolution
	Branch Instruction Speculation
	Branch/Jump Target Prediction
	Branch Prediction: Condition Speculation
	UCB Study [Lee and Smith, 1984]
	Branch Prediction Function
	Example Prediction Algorithm
	IBM Study [Nair, 1992]
	Exhaustive Search for Optimal 2-bit Predictor
	Branch Prediction Implementation (PPC 604)
	BTAC and BHT Design (PPC 604)
	Branch Speculation
	Mis-speculation Recovery
	Tracking Instructions
	BTAC and BHT Design (PPC 604)
	Instruction Flow Techniques
	Static Branch Prediction
	Static Branch Prediction
	Static Branch Prediction
	Dynamic Branch Prediction
	Smith Predictor Hardware
	Two-level Branch Prediction
	Two-level Prediction: Local History
	Local History Predictor Example
	Two-level Taxonomy
	Index Sharing in Two-level Predictors
	Sources of Mispredictions
	Reducing Interference
	Bi-Mode Predictor
	gskewed Predictor
	Agree Predictor
	YAGS Predictor
	Branch Confidence Estimation
	Dynamic History Length
	Loop Count Predictors
	Path History
	Understanding Advanced Predictors
	Understanding Advanced Predictors
	Perceptron Branch Prediction
	Slide Number 58
	Practical Neural Predictors
	Practical Neural Predictors
	Overriding Predictors
	Prediction by Partial Matching
	Current State of the Art
	TAGE Predictor
	Tagged Geometric History Length (TAGE)
	TAGE
	TAGE vs. Neural
	Instruction Flow Techniques
	Branch Target Prediction
	Return Address Stack
	Indirect Branches
	Indirect Branches
	Indirect Branches
	High-Bandwidth Fetch: Collapsing Buffer
	High-Bandwidth Fetch: Trace Cache
	Intel Pentium 4 Trace Cache
	High-Bandwidth Fetch: Loop Buffers
	High Frequency: Next-line Prediction
	High Frequency: Overriding Predictors
	Instruction Flow Summary

