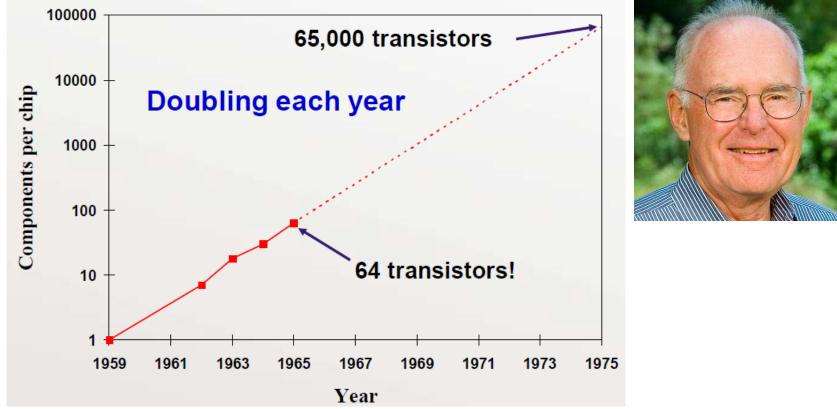


Technology Challenges ECE/CS 752 Fall 2017

Prof. Mikko H. Lipasti University of Wisconsin-Madison


Readings

- Read on your own:
 - Shekhar Borkar, Designing Reliable Systems from Unreliable
 Components: The Challenges of Transistor Variability and Degradation,
 IEEE Micro 2005, November/December 2005 (Vol. 25, No. 6) pp. 10-16.
 - 2015 ITRS Roadmap -- Executive Summary. Read sections 1, 5, 6, 8, 9, and skim the rest.
- Review by Wed 9/13/2017:
 - Jacobson, H, et al., "Stretching the limits of clock-gating efficiency in server-class processors," in Proceedings of HPCA-11, 2005.

Moore's Law (1965)

G. E. Moore, "Cramming More Components onto Integrated Circuits," *Electronics* Vol. 38, No. 8 (Apr. 19, 1965) pp. 114-117.

Dennard Scaling (1974)

Device/Circuit Parameter	Scaling Factor
Device dimension/thickness	1/٨
Doping Concentration	٨
Voltage	1/٨
Current	1/٨
Capacitance	1/٨
Delay time	1/٨
Transistor power	1/Å ²
Power Density	1

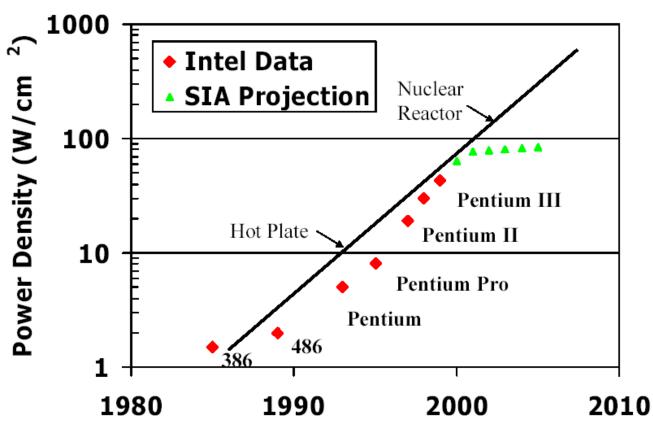
R. Dennard et. al, "Design of ion-implanted MOSFET's with very small physical dimensions" *IEEE Journal of Solid State Circuits*. *SC–9 (5)*

End of Dennard Scaling

- Everything was great! No tradeoffs at all...
 - Density doubling every two years (Moore's law)
 - Feature size
 - Device density
 - Device switching speed improves 30-40%/generation
 - Supply & threshold voltages decrease (V_{dd}, V_{th})
- This ended around 2000
 - Now, feature size, device density scaling continues
 - Roadmap well below 10nm generation
 - Switching speed improves ~20%/generation or less
 - Voltage scaling has tapered off
 - SRAM cell stability becomes an issue at ~0.7V $\rm V_{dd}$
- Still cheaper (or denser) but power-limited

Summary of Challenges

Late 20 th Century	The New Reality
Moore's Law – 2x transistors/chip every 18-24 months	Transistor count still 2x every 18-24 months, but see below
Dennard Scaling – near-constant power/chip	Gone. Not viable for power/chip to double (with 2x transistors/chip growth)
The modest levels of transistor unreliability easily hidden (e.g., via ECC)	Transistor reliability worsening, no longer easy to hide
Focus on computation over communication	Restricted inter-chip, inter-device, inter- machine communication; communication more expensive than communication
One-time (non-recurring engineering) costs growing, but amortizable for mass- market parts	Expensive to design, verify, fabricate, and test, especially for specialized-market platforms


From "21st Century Computer Architecture: A community white paper," Computing Research Assocation (CRA), 2012

Solutions?

- New markets will drive demand and need for innovation
 - Datacenters
 - IoT
 - Mobile
- Incremental (one-time) improvements
 - Copper, high-K dielectric, FinFETs, ...
 - Packaging: 2.1D, 2.5D, 3D
- Beyond CMOS
 - Carbon nanotubes, spin FET,
- "More than Moore"
 - Analog, RF, accelerators, non-Von Neumann, ...

Power Density [Hu et al, MICRO '03 tutorial]

- Power density increasing exponentially
 - Power delivery, packaging, thermal implications
 - Thermal effects on leakage, delay, reliability, etc.

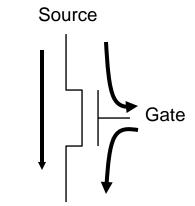
Dynamic Power $P_{dyn} \approx k C V^2 A f$

- Aka AC power, switching power
- Static CMOS: current flows when transistors turn on/off
 - Combinational logic evaluates
 - Sequential logic (flip-flop, latch) captures new value (clock edge)
- Terms
 - C: capacitance of circuit (wire length, no. & size of transistors)
 - V: supply voltage
 - A: activity factor
 - f: frequency
- Moore's Law: which terms increase, which decrease?
 - Voltage scaling has been saving our bacon!

Reducing Dynamic Power

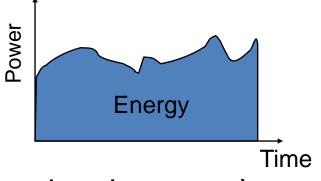
- Reduce capacitance
 - Simpler, smaller design
 - Reduced IPC
- Reduce activity
 - Smarter design
 - Reduced IPC
- Reduce frequency
 - Often in conjunction with reduced voltage
- Reduce voltage
 - Biggest hammer due to quadratic effect, widely employed
 - Can be static (binning/sorting of parts), and/or
 - Dynamic (power modes)
 - E.g. Transmeta Long Run, AMD PowerNow, Intel Speedstep

Frequency/Voltage relationship


- Lower voltage implies lower frequency
 - Lower V_{th} increases delay to sense/latch 0/1
- Conversely, higher voltage enables higher frequency
 - Overclocking
- Sorting/binning and setting various $V_{dd} \& V_{th}$
 - Characterize device, circuit, chip under varying stress conditions
 - Black art very empirical & closely guarded trade secret
 - Implications on reliability
 - Safety margins, product lifetime
 - This is why *overclocking* is possible

Frequency/Voltage Scaling

- Voltage/frequency scaling rule of thumb:
 - +/- 1% performance buys -/+ 3% power (3:1 rule)
- Hence, any power-saving technique that saves less than 3x power over performance loss is uninteresting
- Example 1:
 - New technique saves 12% power
 - However, performance degrades 5%
 - Useless, since $12 < 3 \times 5$
 - Instead, reduce f by 5% (also V), and get 15% power savings
- Example 2:
 - New technique saves 5% power
 - Performance degrades 1%
 - Useful, since $5 > 3 \times 1$
- Does this rule always hold?


Leakage Power (Static/DC)

- Transistors aren't perfect on/off switches
- Even in static CMOS, transistors leak
 - Channel (source/drain) leakage
 - Gate leakage through insulator
 - High-K dielectric replacing SiO₂ helps
- Leakage compounded by
 - Low threshold voltage
 - Low V_{th} => fast switching, more leakage
 - High V_{th} => slow switching, less leakage
 - Higher temperature
 - Temperature increases with power
 - Power increases with C, V², A, f
- Rough approximation: leakage proportional to area
 - Transistors aren't free, unless they're turned off
- Could be a huge problem in future technologies
 - Estimates are 40%-50% of total power

Drain

Power vs. Energy

- Energy: integral of power (area under the curve)
 Energy & power driven by different design constraints
- Power issues:
 - Power delivery (supply current @ right voltage)
 - Thermal (don't fry the chip or make user uncomfortable)
 - Reliability effects (chip lifetime)
- Energy issues:
 - Limited energy capacity (battery)
 - Efficiency (work per unit energy)
- Different usage models drive tradeoffs

Power vs. Energy

- With constant time base, two are "equivalent"
 10% reduction in power => 10% reduction in energy
- Once time changes, must treat as separate metrics
 - E.g. reduce frequency to save power => reduce performance => increase time to completion => consume more energy (perhaps)
- Metric: energy-delay product per unit of work
 - Tries to capture both effects, accounts for quadratic savings from DVS
 - Others advocate energy-delay² (accounts for cubic effect)
 - Best to consider all
 - Plot performance (time), energy, ed, ed²

Usage Models

- Thermally limited => dynamic power dominates
 - Max power ("power virus" contest at Intel)
 - Must deliver adequate power (or live within budget)
 - Must remove heat
 - From chip, from case, room, building, **pocket**
 - Chip hot spots cause problems
- Efficiency => dynamic & static power matter
 - E.g. energy per DVD frame
 - Analogy: cell-phone "talk time"
- Longevity => static power dominates
 - Minimum power while still "awake"
 - Cellphone "standby" time
 - Laptop still responds quickly
 - Not suspend/hibernate
 - "Power state" management very important
 - Speedstep, PowerNow, LongRun

Worst Case

Average Case

Best Case

Circuit-Level Techniques

- Multiple voltages
 - Realize non-critical circuits with slower transistors
 - Voltage islands: Vdd and Vth are lower
 - Problem: supplying multiple Vdd
 - MTCMOS: only Vth is lower
- Multiple frequencies
 - Globally Asynchronous Locally Synchronous (GALS)
- Exploiting safety margins
 - Average case vs. worst case design
 - Razor latch [UMichigan]:
 - Sample latch input twice, then compare, recover
- Body biasing
 - Reduce leakage by adapting V_{th}

Architectural Techniques

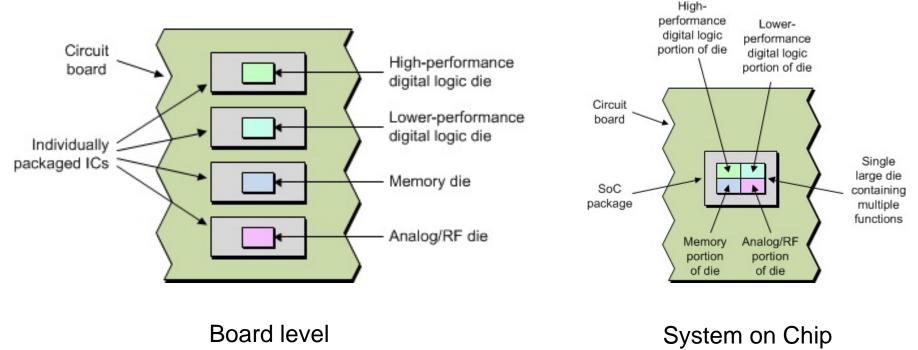
- Multicore chips (later)
- Clock gating (dynamic power)
 - 70% of dynamic power in IBM Power5 [Jacobson et al., HPCA 04]
 - Inhibit clock for
 - Functional block
 - Pipeline stage
 - Pipeline register (sub-stage)
 - Widely used in real designs today
 - Control overhead, timing complexity (violates fully synchronous design rules)
- Power gating (leakage power)
 - Sleep transistors cut off V_{dd} or ground path
 - Apply to FU, cache subarray, even entire core in CMP

Architectural Techniques

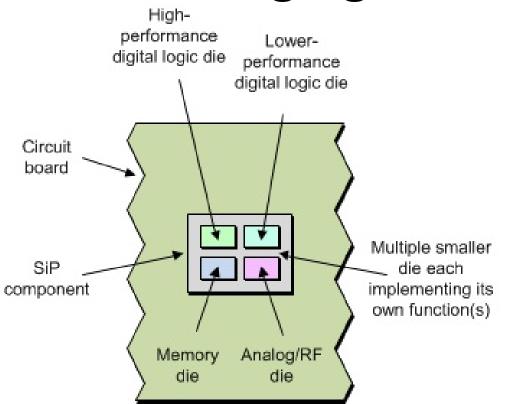
- Cache reconfiguration (leakage power)
 - Not all applications or phases require full L1 cache capacity
 - Power gate portions of cache memory
 - State-preservation
 - Flush/refill (non-state preserving) [Powell et al., ISLPED 00]
 - Drowsy cache (state preserving) [Flautner, <u>Kim</u> et al., ISCA 02]
 - Complicates a critical path (L1 cache access)
 - Does not apply to lower level caches
 - High V_{th} (slower) transistors already prevent leakage

Architectural Techniques

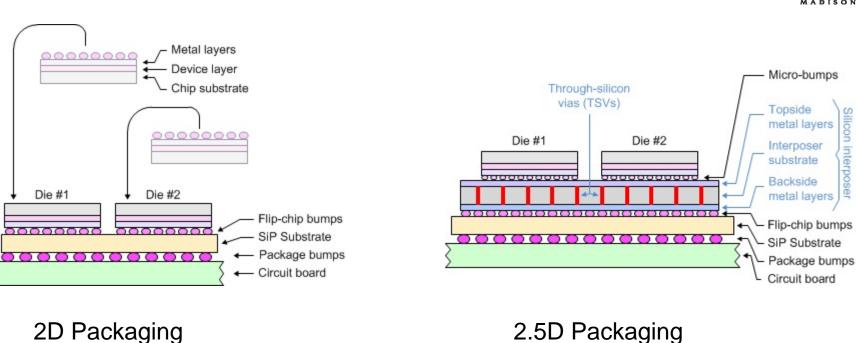
- Heterogeneous cores [Kumar et al., MICRO-36]
 - Prior-generation simple core consumes small fraction of die area
 - Use simple core to run low-ILP workloads
 - E.g. ARM's big.LITTLE
- Configurable cores: dynamically vary ILP vs. power
- Filter caches (dynamic power)
 - Many references are required for correctness but result in misses
 - External snoops [Jetty, HPCA '01]
 - Load/store alias checks [Sethumadhavan et al., MICRO '03]
 - Filter caches summarize cache contents (e.g. Bloom filter)
 - Much smaller filter cache lookup avoids lookup in large/powerhungry structure
- And many others...check proceedings of
 - ISLPED, MICRO, ISCA, HPCA, ASPLOS, PACT

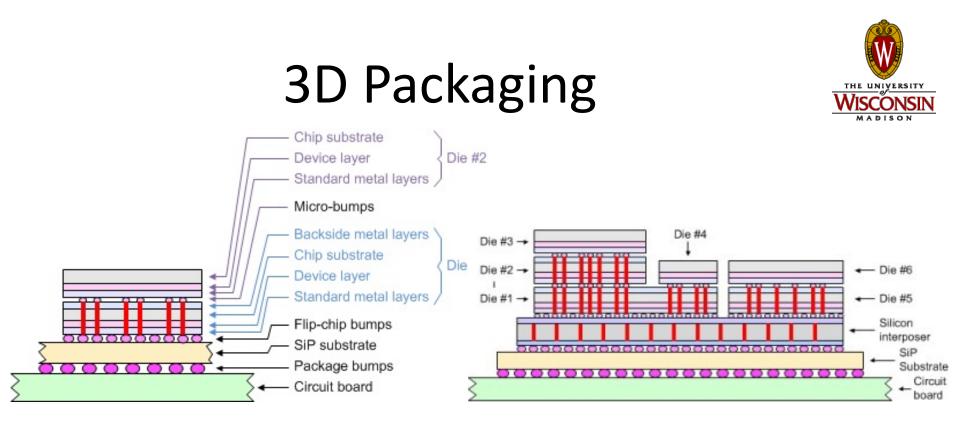

Variability

- Shrinking device dimensions lead to sensitivity to minor processing variations
 - "No two transistors are the same"
 - Die-to-die variations
 - Across multiple die on same wafer, across wafers
 - Within-die variations
 - Systematic and random
 - E.g. line edge roughness due to sub-wavelength lithography or dopant variations (~10 molecules)
 - Dynamic variations
 - E.g. temperature-induced variability (hot spots)


2D Packaging

[M. Maxfield, "2D vs. 2.5D vs. 3D ICs 101," EE Times, April 2012] Conventional packaging approaches


2D Packaging


[M. Maxfield, "2D vs. 2.5D vs. 3D ICs 101," EE Times, April 2012] Move toward System in Package (SIP)

• PCB, ceramic, semiconductor substrates

2.5D Packaging

[M. Maxfield, "2D vs. 2.5D vs. 3D ICs 101," EE Times, April 2012] 2.5D uses silicon interposer, through-silicon vias (TSV)

3D Homogeneous

3D Heterogeneous

[M. Maxfield, "2D vs. 2.5D vs. 3D ICs 101," EE Times, April 2012] 3D uses through-silicon vias (TSV) and/or interposer

Packaging Discussion

- Heterogeneous integration
 - RF, analog (PHY), FG/PCM/ReRAM, photonics
- Cost
- Silicon yield
- Bandwidth, esp. interposer
- Thermals
- It's real!
 - DRAM: HMC, HBM
 - FPGAs
 - GPUs: AMD, NVIDIA
 - CPUs: AMD Zen, EPYC

Summary

- Technology scaling, Moore vs. Dennard
- Power: dynamic, static
 - CMOS scaling trends
 - Power vs. Energy
 - Dynamic power vs. leakage power
- Usage Models: thermal, efficiency, longevity
- Circuit Techniques
- Architectural Techniques
- Variability
- Packaging