
HW1 Assignment

Problem 1: Solve P1.7, P1.8, P1.9, and P1.10 in Chapter 1 of the Shen/Lipasti 
textbook.

1. Given the parameters of Problem 6, consider a strength-reducing optimization that converts 
multiplies by a compile-time constant into a sequence of shifts and adds. For this instruction 
mix, 50% of the multiplies can be converted to shift-add sequences with an average length of 
three instructions. Assuming a fixed frequency, compute the change in instructions per pro-
gram, cycles per instruction, and overall program speedup.

(P1.6 for reference: A program’s run time is determined by the product of instructions per 

program, cycles per instruction, and clock frequency. Assume the following instruction mix 

for a MIPS-like RISC instruction set: 15% stores, 25% loads, 15% branches, and 35% inte-

ger arithmetic, 5% integer shift, and 5% integer multiply. Given that load instructions 

require two cycles, branches require four cycles, integer ALU instructions require one cycle, 

and integer multiplies require ten cycles, compute the overall CPI.)

2. Recent processors like the Pentium 4 processors do not implement single-cycle shifts. Given 
the scenario of Problem 7, assume that s = 50% of the additional integer and shift instruc-
tions introduced by strength reduction are shifts, and shifts now take four cycles to execute. 
Recompute the cycles per instruction and overall program speedup. Is strength reduction still 
a good optimization?

3. Given the assumptions of Problem 8, solve for the break-even ratio s (percentage of addi-
tional instructions that are shifts). That is, find the value of s (if any) for which program per-
formance is identical to the baseline case without strength reduction (Problem 6).

TABLE  1 CPI computation

Type Old Mix New Mix Cost CPI

store 15% 1

load 25% 2

branch 15% 4

integer & shift 40% 1

multiply 5% 10

Total 100%

TABLE  2 CPI computation

Type Old Mix New Mix Cost CPI

store 15% 1

load 25% 2

branch 15% 4

integer 35% 1

shift 5% 4

multiply 5% 10

Total 100%



4. Given the assumptions of Problem 8, assume you are designing the shift unit on the Pentium 
4 processor. You have concluded there are two possible implementation options for the shift 
unit: 4-cycle shift latency at a frequency of 2 GHz, or 2-cycle shift latency at 1.9 GHz. 
Assume the rest of the pipeline could run at 2 GHz, and hence the 2-cycle shifter would set 
the entire processor’s frequency to 1.9 GHz. Which option will provide better overall perfor-
mance?

Problem 2: Solve P2.4, P2.5, P2.6 in Chapter 2 of the Shen/Lipasti textbook. 

5. Consider that you would like to add a load-immediate instruction to the TYP instruction set 
and pipeline. This instruction extracts a 16-bit immediate value from the instruction word, 
sign-extends the immediate value to 32 bits, and stores the result in the destination register 
specified in the instruction word. Since the extraction and sign-extension can be accom-
plished without the ALU, your colleague suggests that such instructions be able to write 
their results into the register in the decode (ID) stage. Using the hazard detection algorithm 
described in Figure 2-15, identify what additional hazards such a change might introduce.

6. Ignoring pipeline interlock hardware (discussed in Problem 6), what additional pipeline 
resources does the change outline in Problem 4 require? Discuss these resources and their 
cost.

7. Considering the change outlined in Problem 4, redraw the pipeline interlock hardware 
shown in Figure 1-1 to correctly handle the load-immediate instructions.

Problem 3: Solve P2.13 and P2.14 from Chapter 2 of the Shen/Lipasti text-
book. 

8. Given the IBM experience outlined in Section 2.2.4.3, compute the CPI impact of the addi-
tion of a level-zero data cache that is able to supply the data operand in a single cycle, but 
only 75% of the time. The level-zero and level-one caches are accessed in parallel, so that 
when the level-zero cache misses, the level-one cache returns the result in the next cycle, 
resulting in one load-delay slot. Assume uniform distribution of level-zero hits across load 
delay slots that can and cannot be filled. Show your work.

9. Given the assumptions of Problem 11, compute the CPI impact if the level-one cache is 
accessed sequentially, only after the level-zero cache misses, resulting in two load-delay 
slots instead of one. Show your work.
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Problem 4: Solve P3.3 and P3.13 from Chapter 3 of the Shen/Lipasti textbook. 
10. Given the example code in Problem 1 (below), and assuming a virtually-addressed two-way 

set associative cache of capacity 8KB and 64 byte blocks, compute the overall miss rate 
(number of misses divided by number of references). Assume that all variables except array 
locations reside in registers, and that arrays A, B, and C are placed consecutively in memory.

double A[1024], B[1024], C[1024];

for(int i=0;i<1000;i += 2) {

A[i] = 35.0 * B[i] + C[i+1];

}

11. Consider a processor with 32-bit virtual addresses, 4KB pages and 36-bit physical addresses. 
Assume memory is byte-addressable (i.e. the 32-bit VA specifies a byte in memory).

L1 instruction cache: 64 Kbytes, 128 byte blocks, 4-way set associative, indexed and 
tagged with virtual address.

L1 data cache: 32 Kbytes, 64 byte blocks, 2-way set associative, indexed and tagged with 
physical address, write-back.

FIGURE  1-1 Figure 2-18: Implementation of pipeline interlock for RAW hazards involving a leading ALU 
instruction.

Comp Comp Comp Comp

1 0

1 0 1 0

1 0

ALU

Register
file



4-way set associative TLB with 128 entries in all.  Assume the TLB keeps a dirty bit, a ref-
erence bit, and 3 permission bits (read, write, execute) for each entry.

Specify the number of offset, index, and tag bits for each of these structures in the table 
below.  Also, compute the total size in number of bit cells for each of the tag and data arrays.

Problem 5: Solve P4.5, P4.8 from Chapter4 of the Shen/Lipasti textbook. 
12. One idea to eliminate the branch misprediction penalty is to build a machine that executes 

both paths of a branch. In a 2-3 paragraph essay, explain why this may or may not be a good 
idea.

13. In an in-order pipelined processor, pipeline latches are used to hold result operands from the 
time an execution unit computes them until they are written back to the register file during 
the writeback stage. In an out-of-order processor, rename registers are used for the same pur-
pose. Given a four-wide out-of-order processor TYP pipeline, compute the minimum num-
ber of rename registers needed to prevent rename register starvation from limiting 
concurrency. What happens to this number if frequency demands force a designer to add five 
extra pipeline stages between dispatch and execute, and five more stages between execute 
and retire/writeback?

Problem 6: Solve P5.1, P5.2, P5.7, P5.14 from Chapter 5 of the Shen/Lipasti 
textbook. 

14. Identify basic blocks:

15. Draw the control flow graph for this benchmark.

16. Assume that an one-bit (history bit) state machine (see above) is used as the prediction algo-
rithm for predicting the execution of the two branches in this loop. Indicate the predicted and 
actual branch directions of the b1 and b2 branch instructions for each iteration of this loop. 
Assume initial state of 0, i.e., NT, for the predictor.

8 9 10 11 12 20 29 30 31

b1 predicted: ____ ____ ____ ____ ____ ____ ____ ____ ____

b1 actual: ____ ____ ____ ____ ____ ____ ____ ____ ____

Structure Offset bits Index bits Tag bits Size of tag array
Size of data 

array

I-cache

D-cache

TLB

BB# 1 2 3 4 5 6 7 8 9

Instr. #s



b2 predicted: ____ ____ ____ ____ ____ ____ ____ ____ ____

b2 actual: ____ ____ ____ ____ ____ ____ ____ ____ ____

17. Below is the control flow graph of a simple program. The CFG is annotated with three dif-
ferent execution trace paths. For each execution trace circle which branch predictor (bimo-
dal, local, or Gselect) will best predict the branching behavior of the given trace. More than 
one predictor may perform equally well on a particular trace. However, you are to use each 
of the three predictors exactly once in choosing the best predictors for the three traces. Circle 
your choice for each of the three traces and add. (Assume each trace is executed many times 
and every node in the CFG is a       conditional branch. The branch history register for the 
local, global, and Gselect predictors is limited to 4 bits.)  
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