
ECE/CS 752 Spring 2008 Midterm 2 -- Page 1

Last (family) name: _________________________

First (given) name: _________________________

Student I.D. #: _____________________________

Department of Electrical and Computer Engineering
University of Wisconsin - Madison

ECE/CS 752 Advanced Computer Architecture I

Midterm Exam 2
Distributed Friday, May 5, 2008 / Due by 5pmon Monday, May 12, 2008

Please place completed exam in Prof. Lipasti’s mailbox on the first floor of EH4613.

Instructions:

1. This exam is open books, open notes, and open all handouts (including previous
homeworks and exams, project descriptions, textbook, and readings). However, it must be
your own work--do not discuss any aspects of the exam problems with other students
until after all exams have been turned in

2. You must show your complete work. Points will be awarded only based on what appears
in your answers.

3. If you prefer, you can type your answers using a word processor, rather than hand-writing
them on this exam.

4. Failure to follow instructions may result in forfeiture of your exam and will be handled
according to UWS 14 Academic misconduct procedures.

Problem Type Points Score

1 Discussion Questions 20

2 Power Modeling 10

3 Modern Cache Coherence Protocols 15

4 Virtually-indexed Coherent Caches 15

5 Out-of-order Scheduling Replay 20

Total 80

ECE/CS 752 Spring 2008 Midterm 2 -- Page 2

1. Discussion Questions [20 pts]

a. [3 pts] Fine-grained multithreading, coarse-grained multithreading, and

simultaneous multithreading are all used to interleave the execution of multiple
threads on a single processor. Explain when and how instructions from multiple
threads are introduced into and execute within the processor under each scheme.

Not provided (in the book).

b. [3 pts] Modern processors separate wakeup and select and data forwarding (or
data capture) into separate pipeline stages to improve cycle time. In order to
achieve high performance, this requires speculative scheduling. Explain why, and
identify two challenging requirements that the recovery mechanism for a
speculative scheduler must satisfy.

Cycle time reasons. Predict all loads hit the cache (fixed latency). Must recover
on cache misses. Recovery mechanism should be faster than wakeup
propagation, otherwise it will never catchup. Also it must reach the transitive
closure of dependent ops.

c. [2 pts] In a multiscalar processor, what major functions did the sequencer
perform?

Not provided (in the paper).

ECE/CS 752 Spring 2008 Midterm 2 -- Page 3

d. [2 pts] Describe the purpose and operation of the Multiscalar ARB.

Not provided (in the paper).

e. [3 pts] Compare and contrast the key differences between FPM, EDO, SDRAM,
and RDRAM main memory technologies.

Not provided (in the paper)

ECE/CS 752 Spring 2008 Midterm 2 -- Page 4

f. [4 pts] Sequential consistency requires all memory references to appear to other
processors in the system as if they were executed in original program order.
Describe the mechanism used by modern out-of-order processors to enable out-of-
order execution of load instructions while still maintaining the appearance of in-
order execution. Also explain why this mechanism is sufficient for guaranteeing
sequential consistency.

Loads are issued out of order but tracked in the load queue. Remote writes (bus upgrades
or bus writes) show up as invalidates; these are checked against the load queue. Any
conflict indicates that load was prematurely issued. A local replay of the load will force a
miss and reorder that load with respect to the remote processor. This is sufficient since
all stores are performed at commit, in order, so the fact that remote store has reached
commit indicates it should be ordered first. All references that do not conflict need not
be ordered, since the fact that they are not ordered is not “visible” to the programmer or
user of the system.

g. [3 pts] Explain how redundant execution can be used to improve reliability.
Distinguish both temporal and spatial redundancy and identify the sets of faults
that each can be applied to.

Execution instructions twice and comparing results can detect errors. Executing
three times allows one to vote and identify the error.
Temporal redundancy uses the same hardware twice. This will catch transient
(soft) faults.
Spatial redundancy uses dedicated hardware for redundancy. This will catch
transient as well as permanent faults.

ECE/CS 752 Spring 2008 Midterm 2 -- Page 5

2. Power Modeling [10 pts]

Assume a processor with the following energy consumption characteristics for the event
types listed.

Event Energy per instruction (nJ)
Fetch, Decode, Dispatch 2.0
Issue 1.3
Reg file read (per instruction) 1.1
Int/branch execute 0.4
Load execute 0.9
Store execute 0.6
Reg file write 0.65
Commit 0.3

Assume an instruction mix of 25% loads, 15% stores, 20% branches and jumps, and 40%
integer ALU instructions. Assume that all loads and integer ALU ops write a register, and
that this is a physical-register file machine where registers are written speculatively right
after an instruction executes. Finally, assume the processor runs at 2GHz.

a. [4 pts] Assume that on average the processor commits 1.4 IPC, executes 1.8 IPC,
issues 2.0 IPC, and fetches/decodes/dispatches 3.0 IPC. What is the power
consumption (in watts) of this processor running this workload?

1.4 x 0.3 + 1.8 x [1.1 + 0.4x0.6 + 0.9x0.25 + 0.6x0.15 + 0.65x(0.25+0.4)] +
2.0x1.3 + 3.0x2.0 = 12.74nJ/cyc x 2bcyc/sec = 25.48W

b. [4 pts] You decide to implement a branch confidence estimator that slows down
fetch whenever you have predicted a branch with low confidence. Assume that
the power consumption of the confidence estimator is negligible. This approach
reduces the commit rate to 1.35 IPC, execution rate to 1.7 IPC, issue rate to 1.8
IPC, and fetch/decode/dispatch rate to 2.75 IPC. Now what is the power
consumption?

1.35 x 0.3 + 1.7 x [1.1 + 0.4x0.6 + 0.9x0.25 + 0.6x0.15 + 0.65x(0.25+0.4)] +
1.8x1.3 + 2.75x2.0 = 11.75nJ/cyc x 2bcyc/sec = 23.5W

c. [2 pts] Given your answer for (b), does your confidence scheme pass or fail the
3:1 rule of thumb discussed in lecture? Why or why not?

Power savings = 7.7%, perf reduction is 3.57%, so it fails the 3:1 test.

ECE/CS 752 Spring 2008 Midterm 2 -- Page 6

3. Modern Cache Coherence Protocols [15 pts]

M

I

SE

BR

LW

EV or
BW

EV or
BW or
BU

LR/SLR/~S

LW

BW

LW

EV or
BW

Current
State s

Event and Local Coherence Controller Responses and Actions (s' refers to next state)

 Local Read
(LR)

Local Write
(LW)

Local Eviction
(EV)

Bus Read
(BR)

Bus Write
(BW)

Bus Upgrade
(BU)

Invalid (I) Issue bus read
if no sharers
 then s' = E
 else s' = S

Issue bus write
s' = M

s' = I Do nothing Do nothing Do nothing

Shared (S) Do nothing Issue bus
upgrade
s' = M

s' = I Respond
shared

s' = I s' = I

Exclusive
(E)

Do nothing s' = M s' = I Respond
shared
s' = S

s' = I Error

Modified
(M)

Do nothing Do nothing Write data back;
s' = I

Respond dirty;
Write data
back;
s' = S

Respond dirty;
Write data
back;
s' = I

Error

Many modern systems use a MOESI cache coherence protocol, where the
semantics of the additional O state are that the line is shared-dirty: i.e., multiple
copies may exist, but the other copies are in S state, and the cache that has the line
in O state is responsible for writing the line back if it is evicted.

a. [2 pts] Explain what benefit accrues from the addition of O state to the MESI
protocol.
Can delay writing back the dirty line until it is evicted from the cache. This can
also streamline directly providing the dirty line to the requesting processor, since
there is no (slow) writeback involved.

BR

ECE/CS 752 Spring 2008 Midterm 2 -- Page 7

[11 pts] Redraw the state diagram and table above (from the textbook) to
accommodate the O state.

 (add new O state which is entered from M on a BR, and which transitions to I on
LE,BW).

Current
State s

Event and Local Coherence Controller Responses and Actions (s' refers to next state)

 Local Read (LR) Local Write
(LW)

Local Eviction
(EV)

Bus Read
(BR)

Bus Write
(BW)

Bus Upgrade
(BU)

Invalid (I) Issue bus read
if !shared & !dirty
 then s' = E
 else s' = S

Issue bus write
s' = M

s' = I Do nothing Do nothing Do nothing

Shared (S) Do nothing Issue bus
upgrade
s' = M

s' = I Respond shared s' = I s' = I

Exclusive
(E)

Do nothing s' = M s' = I Respond shared
s' = S

s' = I Error

Owned
(O)

Do nothing Issue bus
upgrade
s' = M

Write data back;
s' = I

Respond dirty;
Supply data

Respond dirty;
Supply data
s’= I

s'= I

Modified
(M)

Do nothing Do nothing Write data back;
s' = I

Respond dirty;
Supply data
s’= O

Respond dirty;
Supply data
s' = I

Error

The protocol can also be implemented so that the requestor goes to O, and the supplier
downgrades from M to S. This increases the likelihood that the O block will not get
evicted, since it will be in the MRU position at the receiver.

b. [2 pts] The base protocol has two snoop responses (shared and dirty). Does the
addition of the ‘O’ state require any new responses? If so, what are they?

It can be implemented without any extra responses.

ECE/CS 752 Spring 2008 Midterm 2 -- Page 8

4. Virtually-indexed Coherent Caches [15 pts]

Assume a processor similar to the Hewlett-Packard PA-8500, with only a single level of data
cache. Assume the cache is virtually-indexed but physically tagged, is 4-way associative with
128B lines, and is 512 KB in size. This processor supports multiprocessor coherence, but bus
commands specify physical addresses rather than virtual addresses. In order to snoop
coherence messages from the bus, a reverse-address translation table (RAT) is used to store
physical-to-virtual address mappings stored in the cache.

a. [2 pts] Assuming a fully-associative RAT and 4KB pages, how many entries must
it contain so that it can map the entire data cache? Would you consider this a
reasonable and buildable structure? Why or why not?

There are 4K blocks in the L2 (512KB/128B = 4K); each could have a unique
physical page number in the tag. Hence, a total of 4K entries are needed in the
RAT to guarantee that all cache blocks can be mapped. Of course, a 4K-entry
fully-associative RAT is quite expensive and possibly too slow since it needs to
be accessed for each snoop.

b. [3 pts] Given the assumptions above, describe a reasonable set-associative
organization for the RAT that is still able to map the entire data cache. Would you
consider this a reasonable and buildable structure? Why or why not?

There are 12 untranslated bits in each address, and only 7 of these are used for
block offset. Hence, 5 bits are left to use as part of the index into the L2. Hence,
the RAT could also use these 5 bits to index into the RAT, giving 2^5 = 32 sets.
Hence, you would have 4k/32 = 128-way set associative RAT, which is much
more feasible.

c. [2 pts] Identify another use for the RAT in this design that is not related to
multiprocessor coherence. Describe why it is necessary and describe when and
how the RAT is used for this purpose.

A virtually-indexed cache cannot allow aliased blocks to reside at different
locations in the cache. Whenever a block is inserted in the cache, the RAT must
be consulted to make sure there is no pre-existing aliased block; if there is one, it
must be evicted.

ECE/CS 752 Spring 2008 Midterm 2 -- Page 9

d. [4 pts] Explain the implications of a RAT that is not able to map all possible
entries in the data cache. Describe the sequence of events that must occur
whenever a RAT entry is evicted due to replacement.

This limits the freedom of the cache, since the RAT must maintain inclusion over
the cache. In this case, if one RAT entry is evicted to make room for a new block
being inserted into the cache, all cache entries covered by the old RAT entry must
also be evicted from the cache. This can be quite expensive, since a single 4K-
page RAT entry can map up to 4K/128 = 32 blocks, which must be individually
checked.

e. [4 pts] The PA-8500 was derived from the PA-8000, which had no on-chip caches
(at the time, HP’s proprietary process technology did not effectively support large
amounts of on-chip SRAM; the PA-8500 was fabbed by Intel, so it did not have
this limitation). Architecturally, the PA-8000 was similar in that it had a single
level of cache, implemented using off-chip SRAM. Why do you think HP
designers continued the unconventional single-level approach, even when they
had access to on-chip SRAM for the PA-8500? Do you think this was the right
decision? Justify your answer.

Adding 2nd level is a fairly significant ripup of the existing design, particularly in
a cache-coherent multiprocessor (protocols for multilevel caches can get quite
involved). Given that HP was moving away from PA-RISC and wanted to
minimize its investment and risk, this was probably the right business decision,
though arguably not the right technical decision.

ECE/CS 752 Spring 2008 Midterm 2 -- Page 10

5. Out-of-order Scheduling Replay [20 pts]

Given the following code, assume that array A begins at address 0x0, and array B is placed
consecutively after A in memory, and that each “double” array entry consumes 8 bytes (64 bits).
The data cache is initially empty.

double A[1024], B[1024];
for(int i=0; i<1000; i++) {
 A[i] = 35.0 * B[i];
}

The corresponding machine/assembly code for the loop body looks like this:

loop: addi r1,r1,1 // increment i
 cmp r1,#1000 // compare to 1000
 bge done // exit loop if done
 load f1,0(r2) // r2 points to B[i]
 fmul f2,f1,f4 // f4 preloaded with 35.0
 store f2,0(r4) // r4 points to A[i]
 addi r2,r2,8
 addi r4,r4,8
 jump loop
done: …

You are to analyze the behavior of a 2-wide speculative scheduler in terms of the number of
unnecessarily executed instructions under varying scheduling recovery models, as described in
the Kim reading (“Understanding Scheduling Replay Schemes”).

Assume the following:

 The same 4-stage pipeline from schedule to execute shown in Fig. 5 of [Kim]. Cache
misses are detected at the end of this pipeline, so there are up to 4x2=8 instructions in
flight before the scheduler finds out that a cache miss occurred.

 Load instructions have 1-cycle latency (that is, they execute in the 4th stage from issue)
 Integer, branch, and store-address have a 1-cycle latency
 The floating-point multiply (fmul) instructions have 3-cycle latency that extends beyond

the 1 EX cycle shown in the paper
 All execution units are fully pipelined
 There are two of each type of functional unit, so any instruction pair can issue in each

cycle
 Stores are split into two micro-ops: a store-address micro-op, which issues speculatively

as soon as its address-source register is ready, and the store-data microp, which never
issues speculatively, but executes at commit

 Loads issue speculatively, even if prior store addresses have not yet issued
 The select logic will always issue the oldest of the ready instructions
 Perfect branch prediction and an infinitely large issue queue and reorder buffer, so there

are always more instructions to issue (from future iterations of the loop)
 128-byte cache lines, leading to a 6.25% steady-state miss rate for loads from B[] (1 load

in 16 will miss).

ECE/CS 752 Spring 2008 Midterm 2 -- Page 11

a. [5 pts] For steady-state execution, determine the fraction of instructions that have
to be squashed and replayed under non-selective replay (Sec. 3.3 in the paper).

jmp addi

addi addi

fmul sta

bge load

These ops are in flight when the load misses. All eight are squashed and replay.
In steady state, this is 8/9 instructions per loop, with one miss per 16 loops. This
works out to 8/9 x 1/16 = 1/18, or 5.5%

b. [5 pts] For steady-state execution, determine the fraction of instructions that have
to be squashed and replayed under position-based selective replay (Sec. 3.4.3)

Only the fmul must be squashed, so 1/9 per loop, with one miss per 16 loops,
which works out to 1/9 x 1/16 = 1/144 = 0.69%

ECE/CS 752 Spring 2008 Midterm 2 -- Page 12

c. [5 pts] For steady-state execution, determine the fraction of instructions that have
to be squashed and replayed under ID-based selective replay (Sec. 3.4.1).

Only the fmul must be squashed, so 1/9 per loop, with one miss per 16 loops,
which works out to 1/9 x 1/16 = 1/144 = 0.69%

d. [3 pts] ID-based selective replay is difficult to scale to large instruction windows,
since each in-flight load needs its own “name”. Describe how the token-based
technique in Sec. 4 addresses this problem.

Only loads that are likely to miss get assigned a token. Since most misses are
caused by a small fraction of loads (in typical programs), we need fewer tokens in
flight.

e. [2 pts] Do you believe the token-based technique (Sec. 4) will be effective for the
loop studied in this problem? Why or why not?

No, since all misses are caused by the same static load, there will be no reduction
in the number of tokens needed.

