ECE/CS 752: Advanced Computer Architecture I
Spring Semester 2016, MWF 1:00-2:15 EH 3418
Instructor: Prof. Mikko Lipasti, mikko@engr.wisc.edu, EH3621
http://ece752.ece.wisc.edu

Course Description
This course will teach you the fundamental principles of operation of modern, high-performance processors and systems. We assume knowledge of pipelined processors with cache memories, as studied in depth in ECE 552, and continue with advanced techniques for extracting greater levels of instruction-level parallelism and memory-level parallelism. The former exploits opportunities for parallel execution of instructions from an inherently serial instruction stream, while the latter attempts to overlap increasing memory access latency with other useful work. We will study the memory hierarchy as well as virtual memory, and will also cover processor chips that with multiple cores, where concurrency is extracted from multiple sequential threads of execution.

Prerequisites: ECE 552 (or equivalent) and CS 537 (not strictly enforced).

Course Textbook

These will be supplemented with additional readings as specified in the reading list posted to the class web page.

Lectures
It is very important that you attend lecture faithfully. Much of the material will be covered only in lecture, as the textbook and readings are by definition out of date. Also, we will have several unannounced in-class quizzes. Lecture slots may be overscheduled; we are likely to meet more often than necessary in the first half of the semester to free up time in the second half for project work. Some review lectures will only be presented online.

Homework
There will be several assignments. Some assignments will require the review of material that is touched upon, but not covered in depth in class, and may require C/unix programming skills. Homework will be assigned but not collected or graded; it’s purpose is to help you learn the material and prepare for the midterm exams.

Project
The default course project is to do some original research in a group of three to four students. Some alternatives for original research are: you could examine a modest extension to a paper studied in class or simply revalidate the data in some paper by writing your own simulator. Projects will include a written report. Project work will be presented orally to the rest of the class at the end of the semester.

Quizzes, Paper Reviews, and Examinations
There will be two midterms; the second midterm is scheduled in the final exam timeslot. There will be several unannounced in-class quizzes throughout the semester. A paper review schedule will be published on the website. The lowest quiz score will be dropped to accommodate absences.

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes and Paper Reviews</td>
<td>10%</td>
</tr>
<tr>
<td>Project</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>30%</td>
</tr>
</tbody>
</table>

Communications Channels
I strongly encourage you to meet with me during my office hours, or call me or send e-mail. Introducing yourself to me, expressing concerns, offering suggestions, and seeking advice are among the welcome topics. Please monitor the web site for this course which contains course information, lecture notes, pointers to project resources, and the latest announcements.
Tentative Course Outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Assignments/Comments</th>
<th>Topics</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/22</td>
<td></td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/25, 1/27, 1/29</td>
<td></td>
<td>Power, Reliability, Variability</td>
<td>Ch. 1, papers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipelining Review (online)</td>
<td>Superscalar Organization</td>
<td>Ch. 2</td>
</tr>
<tr>
<td>2</td>
<td>2/1, 2/3, 2/5</td>
<td>Instruction Flow</td>
<td>Cache Memory Review (online)</td>
<td>Ch. 5, Ch. 9</td>
</tr>
<tr>
<td>3</td>
<td>2/8, 2/10, 2/12</td>
<td>HW 1 out</td>
<td>Register Data Flow</td>
<td>Ch. 5</td>
</tr>
<tr>
<td>4</td>
<td>2/15, 2/17, 2/19</td>
<td>Memory Data Flow</td>
<td></td>
<td>Ch. 5</td>
</tr>
<tr>
<td>5</td>
<td>2/22, 2/24, 2/26</td>
<td>Advanced Register Data Flow</td>
<td></td>
<td>Ch. 10</td>
</tr>
<tr>
<td>6</td>
<td>2/29, 3/2, 3/4</td>
<td>HW2 out</td>
<td>Case Studies</td>
<td>Papers, Ch. 6-8</td>
</tr>
<tr>
<td>7</td>
<td>3/7, 3/9, 3/11</td>
<td>Midterm 1 on 3/9</td>
<td>Midterm 1 review</td>
<td>Papers, Ch. 6-8</td>
</tr>
<tr>
<td>8</td>
<td>3/14, 3/16, 3/18</td>
<td>Project proposals due 3/16</td>
<td>Advanced Memory Hierarchy</td>
<td>Ch. 3, papers</td>
</tr>
<tr>
<td>9</td>
<td>3/28, 3/30, 4/1</td>
<td>HW 3 out</td>
<td>Multiple threads</td>
<td>Ch. 11, papers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Case studies</td>
<td>Papers</td>
</tr>
<tr>
<td>10</td>
<td>4/4, 4/6, 4/8</td>
<td>Project progress report due 4/13</td>
<td>Advanced Topics</td>
<td>Papers</td>
</tr>
<tr>
<td>11</td>
<td>4/11, 4/13, 4/15</td>
<td></td>
<td>Lecture canceled, project work</td>
<td>Papers</td>
</tr>
<tr>
<td>12</td>
<td>4/18, 4/20, 4/22</td>
<td></td>
<td>Lecture canceled, project work</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4/25, 4/27, 4/29</td>
<td></td>
<td>Lecture canceled, project work</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5/2, 5/4, 5/6</td>
<td>Final project reports due 5/6</td>
<td>Project talks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Course Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Midterm 2 Review</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Wednesday 5/11</td>
<td>5:05pm-7:05pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>