
Direct to Data caches
By Ram Prasad, Kyle Sunden and Aarati Kakaraparthy

Traditional caches

● Multiple cache hierarchy

● Traverses through various levels to find the data

● Involves tag check at each level

● Consumes 12-45% of the core power

Motivation for D2D

● What if we can determine the cache level holding the data with a single

access?

● This can eliminate the need for checking tags at each level, and go to the

correct cache directly.

● Saves power and cycle time!

● Micro-arch optimizations

The D2D Cache Architecture
Source - The Direct-to-data cache: Navigating the Cache Hierarchy with a single lookup, by Sembrant et. al.

Evaluation of D2D Cache Architecture

We have attempted the following two approaches for evaluating D2D caches:

● An implementation of D2D caches in Gem5

● An evaluation of D2D caches through memory traces

Tools used

● Gem5

● Cacti

● Pintool

Modelling D2D in Gem5

A brief on Gem5 Memory System

● Uses “Memory Objects” (derived classes of MemObject class), to model

the memory system.

● Different memory objects are connected via ports.

● They communicate through transferring packets

● Event-driven programming

A Simple Gem5 configuration

The Initial configuration attempted

CPU

Inst
port

Data
port

Slave
port

Master
port

L1 ICache

Master
port

Slave
port

L1 DCache

Non-coherent L2XBar

System.membus

Slave
port

Master
port

L2 Cache

eTLB (Inst) eTLB (data)

L2 TLB + Hub

Challenges

● The traditional Gem5 caches provided a “mostly exclusive” mode

● We needed to model fully exclusive caches for D2D

● Traditional caches also deal with cache coherency

● We have a single CPU in our desired configuration, so cache coherency is

not essential

The Configuration Implemented (Base and D2D)

O3CPU/
TimingSimpleCPU

Ic
ac

he
_p

or
t

dc
ac

he
_p

or
t

Tag
array/e
TLB

Tag
Array
eTLB

L2 $

L1I $ L1D$

accessL1ITiming()
insertL1I()

handleRequest()
handleResponse()

accessL1DTiming()
insertL1D()

Mem bus

accessL2ITiming()
insertL2()

Tag
array/
L2TLB
+ Hub

Benchmark results of the base configuration

Benchmark name Total Energy spent(nJ) L1I Hit rate L1D hit rate L2 hit rate

libquantum 5705767.03 0.989 0.765 0.997

gcc 11496797.27 0.909 0.503 0.992

hmmer 11692466.37 0.907 0.53 0.999

bzip2 14248942.71 0.932 0.51 0.997

Roadblocks

● Complexity of Gem5 traditional cache, for maintaining cache coherency

● Pages containing both instructions and data blocks

● Instruction and data boundary at block level

Evaluating D2D using memory
traces

Memory trace Implementation

● Python cache implementation which only uses the memory addresses

● Allows for control over the memory subsystem, without needing the full

system.

● “cache” system: Two Level Simple LRU Caches, no virtual to physical

translation

● “etlb” system: Two level D2D Caches with eTLB and Hub, offset translation

Source: http://github.com/ksunden/cachesim

http://github.com/ksunden/cachesim

Input

R 0x93ff60
R 0x7f0ed33ac2f8
R 0x7f0ed33ac338
R 0x7f0ed33ac2f0
W 0x7ffc4e508548
R 0x7f0ed33ac460
R 0x93fea0
R 0x400298
W 0x7f0ed33ac4b4
R 0x4002a0
R 0x40029c
W 0x7f0ed33ac4b8
R 0x4002a4

GCC trace had 10^9 lines, was over 15 GB

Other Sample programs had fewer lines (200k to
800k)

Output

N: 1083945089
L1 hit: 1057090378 (97.523)
L1 miss: 26854711 (2.477)
L2 hit: 24358138 (2.247)
L2 miss: 2496573 (0.230)
Time L1: 4335780356, L2: 295401821,
total: 4631182177
Energy L1: 17605873.417, L2:
12438378.831, total: 30044252.248

N: 1083945089
ETLB Hit, NIC 999191, (0.092181)
ETLB Hit, L1D 1068406787, (98.566505)
ETLB Hit, L2 10211154, (0.942036)
ETLB Miss, 4327957, (0.399278)
Hub Hit, NIC 106862, (0.009859)
Hub Hit, L1 3929152, (0.362486)
Hub Hit, L2 288923, (0.026655)
Hub Miss, 3020, (0.000279)
Time L1: 4273627148, L2: 141972236,
total: 4415599384
Energy L1: 12041636.129, L2:
4428224.749, total: 16469860.878

Memory Access Patterns

Source: The Direct-to-Data (D2D) Cache: Navigating the Cache Hierarchy with a Single Lookup, by Sembrant et. at.

Speed Of Execution

Source: The Direct-to-Data (D2D) Cache: Navigating the Cache Hierarchy with a Single Lookup, by Sembrant et. at.

Energy Usage

Source: The Direct-to-Data (D2D) Cache: Navigating the Cache Hierarchy with a Single Lookup, by Sembrant et.
at.

Conclusions

● Most accesses can be made directly (i.e. hit the ETLB)

● D2D Caches Provide modest memory speed improvements
○ Greater Improvement where L2 Access is important

● Significant Improvements in Energy usage
○ Challenging to account for all energy usage

Future work

● Completing the Gem5 implementation

● Adding the L1 stride prefetcher

● Cachesim improvements
○ Separate Instruction and Data Caches

○ Investigate effects of cache size changes (As in Sembrant et al)

○ Ensure energy usage is all counted

○ Support more cache structures

References

The Direct-to-Data (D2D) cache: navigating the cache hierarchy with a single lookup Sembrant,Hagersten,
Black-Schaffer; ISCA '14; 10.1145/2678373.2665694

The gem5 Simulator. Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. May 2011, ACM SIGARCH Computer Architecture News.

CACTI 6.5: http://www.hpl.hp.com/research/cacti/

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, Kim Hazelwood. "Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation,"
Programming Language Design and Implementation (PLDI), Chicago, IL, June 2005, pp. 190-200.

https://doi.org/10.1145/2678373.2665694
http://dx.doi.org/10.1145/2024716.2024718
http://www.hpl.hp.com/research/cacti/
http://doi.acm.org/10.1145/1065010.1065034

Questions?

Appendix

Source: The Direct-to-Data (D2D) Cache: Navigating the Cache Hierarchy with a Single Lookup, by Sembrant et. at.

Source: The Direct-to-Data (D2D) Cache: Navigating the Cache Hierarchy with a Single Lookup, by Sembrant et. at.

System Configuration from Sembrant et al.

